
Garmin Device Interface Specification

May 19, 2006
Drawing Number: 001-00063-00 Rev. C

Notice:

Garmin International, Inc. makes no warranties, express or implied, to companies or individuals accessing Garmin
International Inc.’s Device Interface, or any other person, with respect to the Device Interface, including without
limitation, any warranties of merchantability or fitness for a particular purpose, or arising from course of performance
or trade usage, all of which are hereby excluded and disclaimed by Garmin International, Inc.

Garmin International, Inc. shall not be liable for any indirect, incidental, consequential, punitive or special damages,
even if Garmin International, Inc. has been advised of the possibility of such damages. Some states may not allow the
exclusion on limitation of liability from consequential or incidental damages, so the foregoing limitation on liability for
damages may not apply to you.

Warning:

All companies and individuals accessing the Device Interface are advised to ensure the correctness of their Device
Interface software and to avoid the use of undocumented Device Interface features, particularly with respect to packet
ID, command ID, and packet data content. Any software implementation errors or use of undocumented features,
whether intentional or not, may result in damage to and/or unsafe operation of the device.

Technical Support Is Not Provided:

Garmin International, Inc. cannot provide technical support for questions relating to the Device Interface. However, if
you would like to comment on this document, or if you would like to report a document error, you may send email to
techsupp@garmin.com, or write to the address shown below.

Garmin International, Inc.
1200 E. 151st St.

Olathe, Kansas USA 66062
(913) 397-8200

Copyright © 1998-2006 Garmin International, Inc.

 Page i 001-00063-00 Rev. C

Table of Contents

1 Introduction.. 1
1.1 Overview ... 1
1.2 Definition of Terms ... 1
1.3 Specification of Data Types... 1

2 Protocol Layers .. 1

3 Physical Protocols .. 1
3.1 Serial Protocol ... 1

3.1.1 Serial Packet Format .. 2
3.1.2 DLE Stuffing.. 2
3.1.3 ACK/NAK Handshaking.. 2
3.1.4 Serial Protocol Packet IDs.. 2

3.2 USB Protocol... 3
3.2.1 USB Protocol Details ... 3
3.2.2 USB Packet Format.. 3
3.2.3 USB Protocol Layer Packet Ids.. 3
3.2.4 Garmin USB Driver for Microsoft Windows... 4

4 Link Protocols .. 5
4.1 L000 – Basic Link Protocol ... 5

4.1.1 Basic Packet IDs .. 5
4.2 L001 – Link Protocol 1.. 5
4.3 L002 – Link Protocol 2.. 6

5 Overview of Application Protocols.. 6
5.1 Undocumented Application Packets .. 7
5.2 Packet Sequences... 7
5.3 Packet Data Types ... 7
5.4 Standard Beginning and Ending Packets ... 8

5.4.1 Records_Type .. 8
5.5 Device Overwriting of Identically-Named Data .. 8

6 Application Protocols... 8
6.1 A000 – Product Data Protocol ... 8

6.1.1 Product_Data_Type.. 9
6.1.2 Ext_Product_Data_Type .. 9

6.2 A001 – Protocol Capability Protocol... 9
6.2.1 Protocol_Array_Type... 10
6.2.2 Protocol_Data_Type .. 10
6.2.3 Tag Values for Protocol_Data_Type.. 10
6.2.4 Protocol Capabilities Example ... 11

6.3 Device Command Protocols .. 11
6.3.1 A010 – Device Command Protocol 1... 11
6.3.2 A011 – Device Command Protocol 2... 12

6.4 A100 – Waypoint Transfer Protocol.. 12
6.5 A101 – Waypoint Category Transfer Protocol .. 13
6.6 Route Transfer Protocol... 13

6.6.1 Database Matching for Route Waypoints... 13
6.6.2 A200 – Route Transfer Protocol .. 14
6.6.3 A201 – Route Transfer Protocol .. 14

6.7 Track Log Transfer Protocol.. 15
6.7.1 Time Values Ignored by Device... 15
6.7.2 A300 – Track Log Transfer Protocol ... 15

 Page ii 001-00063-00 Rev. C

6.7.3 A301 – Track Log Transfer Protocol ... 16
6.7.4 A302 – Track Log Transfer Protocol ... 16

6.8 A400 – Proximity Waypoint Transfer Protocol... 16
6.9 A500 – Almanac Transfer Protocol ... 17
6.10 A600 – Date and Time Initialization Protocol ... 17
6.11 A650 – FlightBook Transfer Protocol ... 18
6.12 A700 – Position Initialization Protocol.. 18
6.13 A800 – PVT Protocol .. 18
6.14 A906 – Lap Transfer Protocol ... 19
6.15 A1000 – Run Transfer Protocol... 19
6.16 A1002 – Workout Transfer Protocol ... 20
6.17 A1004 – Fitness User Profile Transfer Protocol .. 21
6.18 A1005 – Workout Limits Transfer Protocol .. 21
6.19 A1006 – Course Transfer Protocol .. 22
6.20 A1009 – Course Limits Transfer Protocol... 23

7 Data Types ... 23
7.1 Serialization of Data .. 23
7.2 Character Sets .. 24
7.3 Basic Data Types ... 24

7.3.1 char... 24
7.3.2 Character Arrays .. 24
7.3.3 Variable-Length Strings ... 24
7.3.4 uint8 ... 25
7.3.5 uint16 ... 25
7.3.6 uint32 ... 25
7.3.7 sint16.. 25
7.3.8 sint32.. 25
7.3.9 float32 .. 25
7.3.10 float64 .. 25
7.3.11 bool .. 25
7.3.12 position_type.. 25
7.3.13 radian_position_type .. 26
7.3.14 time_type.. 26
7.3.15 symbol_type ... 26

7.4 Product-Specific Data Types ... 31
7.4.1 D100_Wpt_Type.. 31
7.4.2 D101_Wpt_Type.. 31
7.4.3 D102_Wpt_Type.. 32
7.4.4 D103_Wpt_Type.. 32
7.4.5 D104_Wpt_Type.. 33
7.4.6 D105_Wpt_Type.. 33
7.4.7 D106_Wpt_Type.. 33
7.4.8 D107_Wpt_Type.. 34
7.4.9 D108_Wpt_Type.. 34
7.4.10 D109_Wpt_Type.. 36
7.4.11 D110_Wpt_Type.. 37
7.4.12 D120_Wpt_Cat_Type .. 38
7.4.13 D150_Wpt_Type.. 38
7.4.14 D151_Wpt_Type.. 39
7.4.15 D152_Wpt_Type.. 40
7.4.16 D154_Wpt_Type.. 40
7.4.17 D155_Wpt_Type.. 41
7.4.18 D200_Rte_Hdr_Type... 42
7.4.19 D201_Rte_Hdr_Type... 42
7.4.20 D202_Rte_Hdr_Type... 42

 Page iii 001-00063-00 Rev. C

7.4.21 D210_Rte_Link_Type.. 42
7.4.22 D300_Trk_Point_Type... 43
7.4.23 D301_Trk_Point_Type... 43
7.4.24 D302_Trk_Point_Type... 43
7.4.25 D303_Trk_Point_Type... 43
7.4.26 D304_Trk_Point_Type... 44
7.4.27 D310_Trk_Hdr_Type... 44
7.4.28 D311_Trk_Hdr_Type... 44
7.4.29 D312_Trk_Hdr_Type... 44
7.4.30 D400_Prx_Wpt_Type .. 45
7.4.31 D403_Prx_Wpt_Type .. 45
7.4.32 D450_Prx_Wpt_Type .. 45
7.4.33 D500_Almanac_Type .. 46
7.4.34 D501_Almanac_Type .. 46
7.4.35 D550_Almanac_Type .. 46
7.4.36 D551_Almanac_Type .. 47
7.4.37 D600_Date_Time_Type... 47
7.4.38 D650_FlightBook_Record_Type ... 47
7.4.39 D700_Position_Type.. 47
7.4.40 D800_Pvt_Data_Type.. 48
7.4.41 D906_Lap_Type .. 49
7.4.42 D1000_Run_Type .. 50
7.4.43 D1001_Lap_Type .. 50
7.4.44 D1002_Workout_Type... 51
7.4.45 D1003_Workout_Occurrence_Type .. 52
7.4.46 D1004_Fitness_User_Profile_Type ... 53
7.4.47 D1005_Workout_Limits .. 53
7.4.48 D1006_Course_Type ... 54
7.4.49 D1007_Course_Lap_Type ... 54
7.4.50 D1008_Workout_Type... 54
7.4.51 D1009_Run_Type .. 55
7.4.52 D1010_Run_Type .. 56
7.4.53 D1011_Lap_Type .. 57
7.4.54 D1012_Course_Point_Type ... 57
7.4.55 D1013_Course_Limits_Type ... 58

8 Appendixes .. 59
8.1 Device Product IDs.. 59
8.2 Device Protocol Capabilities ... 60
8.3 Frequently Asked Questions.. 64

8.3.1 Hexadecimal vs. Decimal Numbers ... 64
8.3.2 Length of Received Data Packet .. 64
8.3.3 Waypoint Creation Date... 64
8.3.4 Almanac Data Parameters .. 64
8.3.5 Example Code .. 64
8.3.6 Sample Data Transfer Dumps .. 64
8.3.7 Additional Tables ... 64
8.3.8 Software Versions .. 65

 Page iv 001-00063-00 Rev. C

 Table of Tables
Table 1 – Protocol Layers .. 1
Table 2 – Serial Packet Format .. 2
Table 3 – USB Packet Format.. 3
Table 4 – Data Available Packet.. 4
Table 5 – Start Session Packet ... 4
Table 6 – Session Started Packet ... 4
Table 7 – Example Packet Sequence.. 7
Table 8 – Standard Beginning and Ending Packets ... 8
Table 9 – A000 Protocol Data Protocol Packet Sequence ... 9
Table 10 – A001 Protocol Capability Protocol Packet Sequence .. 10
Table 11 – Protocol Capabilities Example... 11
Table 12 – Device Command Protocol Packet Sequence .. 11
Table 13 – A100 Waypoint Transfer Protocol Packet Sequence ... 13
Table 14 – A101 Waypoint Category Transfer Protocol Packet Sequence.. 13
Table 15 – A200 Route Transfer Protocol Packet Sequence ... 14
Table 16 – A201 Route Transfer Protocol Packet Sequence ... 14
Table 17 – A300 Track Log Transfer Protocol Packet Sequence .. 15
Table 18 – A301 Track Log Transfer Protocol Packet Sequence .. 16
Table 19 – A400 Proximity Waypoint Transfer Protocol Packet Sequence .. 16
Table 20 – A500 Almanac Transfer Protocol Packet Sequence... 17
Table 21 – A600 Date and Time Initialization Protocol Packet Sequence... 18
Table 22 – A650 FlightBook Transfer Protocol Packet Sequence... 18
Table 23 – A700 Position Initialization Protocol Packet Sequence ... 18
Table 24 – A800 PVT Protocol Packet Sequence.. 19
Table 25 – A906 Lap Transfer Protocol Packet Sequence... 19
Table 26 – A1000 Run Transfer Protocol Packet Sequence .. 20
Table 27 – A1002 Workout Transfer Protocol... 21
Table 28 – A1004 Fitness User Profile Transfer Protocol ... 21
Table 29 – A1005 Workout Limits Transfer Protocol ... 22
Table 30 – A1006 Course Transfer Protocol ... 22
Table 31 – A1009 Course Limits Transfer Protocol .. 23
Table 32 – Character Sets .. 24
Table 33 – D1002 Workout Duration .. 52
Table 34 – D1002 Workout Targets... 52
Table 35 – D1008 Workout Targets... 55
Table 36 – program_type bit field.. 56
Table 37 – Product IDs .. 59
Table 38 – Device Protocol Capabilities.. 61

 Page v 001-00063-00 Rev. C

1 Introduction

1.1 Overview

This document describes the Garmin Device Interface, which is used to communicate with a Garmin device. The
Device Interface supports bi-directional transfer of data such as waypoints, routes, track logs, proximity waypoints, and
satellite almanac. In the sections below, detailed descriptions of the interface protocols and data types are given, and
differences among Garmin devices are identified.

1.2 Definition of Terms

In this document, “device” means a Garmin-produced device, and “host” means the device communicating with the
Garmin-produced device. A host is usually a personal computer but is not required to be.

1.3 Specification of Data Types

All data types in this document are specified using the C programming language. Detailed specifications for basic C
data types, basic Garmin data types, and device-specific data types are found in section 7 on page 23. Data types
having limited scope are specified in earlier sections throughout this document (usually in the same section in which
they are introduced). Unless otherwise specified, the behavior of software upon receiving invalid data is undefined.

2 Protocol Layers

The protocols used in the Garmin Device Interface are arranged in the following three layers:

Table 1 – Protocol Layers

Protocol Layer
Application (highest)
Link
Physical (lowest)

The Physical layer is based on RS-232. The Link layer uses packets with minimal overhead. At the Application layer,
there are several protocols used to implement data transfers between a host and a device. These protocols are described
in more detail later in this document.

3 Physical Protocols

3.1 Serial Protocol

The Serial Protocol is based on RS-232. The voltage characteristics are compatible with most hosts; however, the
device transmits positive voltages only, whereas the RS-232 standard requires both positive and negative voltages.
Also, the voltage swing between mark and space may not be large enough to meet the strict requirements of the RS-232
standard. Still, the device voltage characteristics are compatible with most hosts as long as the interface cable is wired
correctly.

The other electrical characteristics are full duplex, serial data, 9600 baud, 8 data bits, no parity bits, and 1 stop bit.

The mechanical characteristics vary among devices; most devices have custom-designed interface connectors in order
to meet Garmin packaging requirements. The electrical and mechanical connections to standard DB-9 or DB-25
connectors can be accomplished with special cables that are available from Garmin.

 Page 1 001-00063-00 Rev. C

3.1.1 Serial Packet Format

All data is transferred in byte-oriented packets. A packet contains a three-byte header (DLE, ID, and Size), followed by
a variable number of data bytes, followed by a three-byte trailer (Checksum, DLE, and ETX). The following table
shows the format of a packet:

Table 2 – Serial Packet Format

Byte Number Byte Description Notes
0 Data Link Escape ASCII DLE character (16 decimal)
1 Packet ID identifies the type of packet
2 Size of Packet Data number of bytes of packet data (bytes 3 to n-4)
3 to n-4 Packet Data 0 to 255 bytes
n-3 Checksum 2's complement of the sum of all bytes from byte 1 to byte n-4
n-2 Data Link Escape ASCII DLE character (16 decimal)
n-1 End of Text ASCII ETX character (3 decimal)

3.1.2 DLE Stuffing

If any byte in the Size, Packet Data, or Checksum fields is equal to DLE, then a second DLE is inserted immediately
following the byte. This extra DLE is not included in the size or checksum calculation. This procedure allows the DLE
character to be used to delimit the boundaries of a packet.

3.1.3 ACK/NAK Handshaking

Unless otherwise noted in this document, a device that receives a data packet must send an ACK or NAK packet to the
transmitting device to indicate whether or not the data packet was successfully received. Normally, the transmitting
device does not send any additional packets until an ACK or NAK is received (this is sometimes referred to as a “stop
and wait” protocol).

The ACK packet has a Packet ID equal to 6 decimal (the ASCII ACK character), while the NAK packet has a Packet
ID equal to 21 decimal (the ASCII NAK character). Both ACK and NAK packets contain an 8-bit integer in their
packet data to indicate the Packet ID of the acknowledged packet. Note: some devices will report a Packet Data Size of
two bytes for ACK and NAK packets; however, only the first byte should be considered. Note: Some devices may
work sporadically if only one byte ACK/NAK packets are sent. The host should send two byte ACK/NAK packets to
ensure consistency.

If an ACK packet is received, the data packet was received correctly and communication may continue. If a NAK
packet is received, the data packet was not received correctly and should be sent again. NAKs are used only to indicate
errors in the communications link, not errors in any higher-layer protocol. For example, consider the following higher-
layer protocol error: a Pid_Wpt_Data packet was expected by the device, but a valid Pid_Xfer_Cmplt packet was
received instead. This higher-layer protocol error does not cause the device to generate a NAK.

Some devices may send NAK packets during communication timeout conditions. For example, when the device is
waiting for a packet in the middle of a protocol sequence, it will periodically send NAK packets (typically every 2-5
seconds) if no data is received from the host. The purpose of this NAK Packet is to guard against a deadlock condition
in which the host is waiting for an ACK or NAK in response to a data packet that was never received by the device
(perhaps due to cable disconnection during the middle of a protocol sequence). Not all devices provide NAKs during
timeout conditions, so the host should not rely on this behavior. It is recommended that the host implement its own
timeout and retransmission strategy to guard against deadlock. For example, if the host does not receive an ACK within
a reasonable amount of time, it could warn the user and give the option of aborting or re-initiating the transfer.

3.1.4 Serial Protocol Packet IDs

The Serial Protocol Packet ID values are defined using the enumerations shown below:

 Page 2 001-00063-00 Rev. C

enum
 {
 Pid_Ack_Byte = 6,
 Pid_Nak_Byte = 21
 };

Additional Packet IDs are defined by other Link protocols (see below); however, the values of ASCII DLE (16 decimal)
and ASCII ETX (3 decimal) are reserved and will never be used as Packet IDs in any Link protocol. This allows more
efficient detection of packet boundaries in the link-layer software implementation.

3.2 USB Protocol

This protocol provides a mechanism for using the link and application layer protocols over USB.

3.2.1 USB Protocol Details

Microsoft Windows application developers do not need to be familiar with the concepts in this section in order to use
the USB protocol.

The host always transmits to the device over the Bulk OUT pipe.

The device can choose to transmit to the host over either the Interrupt IN pipe or the Bulk IN pipe. Once the device
begins an application protocol over a particular pipe, the device will complete the protocol over that same pipe. Some
devices may transmit data to the host only using the Interrupt IN pipe.

The host must constantly check the interrupt pipe for data. The host only reads the bulk pipe when it receives a Data
Available packet from the device (see section 3.2.3.1 below). Once the host begins reading the bulk pipe, it should
keep reading packets until it receives a zero length transfer (i.e. USB transfer, not a Garmin packet.)

3.2.2 USB Packet Format

All packets transferred using this protocol have the following format:

Table 3 – USB Packet Format

Byte Number Byte Description Notes
0 Packet Type USB Protocol Layer = 0, Application Layer = 20
1-3 Reserved Must be set to 0
4-5 Packet ID
6-7 Reserved Must be set to 0
8-11 Data Size
12+ Data

3.2.3 USB Protocol Layer Packet Ids

The USB Protocol Packet ID values are defined using the enumerations shown below:
enum
 {
 Pid_Data_Available = 2,
 Pid_Start_Session = 5,
 Pid_Session_Started = 6
 };

3.2.3.1 Data Available Packet

The Data Available packet signifies that data has become available for the host to read. The host should read data until
receiving a transfer with no data (zero length). No data is associated with this packet.

 Page 3 001-00063-00 Rev. C

Table 4 – Data Available Packet

N Direction Packet ID Packet Data Type
0 Device to Host Pid_Data_Available n/a

3.2.3.2 Start Session Packet

The Start Session packet must be sent by the host to begin transferring packets over USB. It must also be sent anytime
the host deliberately stops transferring packets continuously over USB and wishes to begin again. No data is associated
with this packet.

Table 5 – Start Session Packet

N Direction Packet ID Packet Data Type
0 Host to Device Pid_Start_Session n/a

3.2.3.3 Session Started Packet

The Session Started packet indicates that transfers can take place to and from the device. The host should ignore any
packets it receives before receiving this packet. The data returned with this packet is the device’s unit ID.

Table 6 – Session Started Packet

N Direction Packet ID Packet Data Type
0 Device to Host Pid_Session_Started uint32

3.2.4 Garmin USB Driver for Microsoft Windows

This section provides information related to the use of the Garmin-provided USB driver for use on Microsoft Windows
operating systems. This driver is compatible with Windows 98, ME, 2000 and XP. It is assumed that the reader is
familiar with programming for the Windows Platform Software Development Kit and Driver Development Kit.

Applications send packets to the device using the Win32 WriteFile function. If the packet size is an exact multiple of
the USB packet size, an additional call to WriteFile should be made passing in no data.

Applications receive packets asynchronously from the device by constantly calling the Win32 DeviceIoControl
function. When an application receives a Data Available packet, it should read packets using the Win32 ReadFile
function. Once an application begins receiving packets for a protocol using DeviceIoControl or ReadFile, all
subsequent packets for that protocol will be received using the same function.

3.2.4.1 Device Interface GUID
// {2C9C45C2-8E7D-4C08-A12D-816BBAE722C0}
DEFINE_GUID(GUID_DEVINTERFACE_GRMNUSB, 0x2c9c45c2L, 0x8e7d, 0x4c08, 0xa1, 0x2d, 0x81,
0x6b, 0xba, 0xe7, 0x22, 0xc0);

3.2.4.2 Constants
#define API_VERSION 1
#define MAX_BUFFER_SIZE 4096
#define ASYNC_DATA_SIZE 64

3.2.4.3 ReadFile, WriteFile Functions

The buffer passed in by the client to ReadFile or WriteFile must be no larger than MAX_BUFFER_SIZE. If data
exceeds MAX_BUFFER_SIZE, multiple calls must be made.

 Page 4 001-00063-00 Rev. C

3.2.4.4 IOCTLS

The following constants are intended for use with the DeviceIoControl function. For each IOCTL below, the return
value is the number of bytes written to the output buffer.
#define IOCTL_API_VERSION CTL_CODE(FILE_DEVICE_UNKNOWN, 0x800, METHOD_BUFFERED,
FILE_ANY_ACCESS)

Output buffer receives 4-byte API version.
#define IOCTL_ASYNC_IN CTL_CODE(FILE_DEVICE_UNKNOWN, 0x850, METHOD_BUFFERED,
FILE_ANY_ACCESS)

Output buffer receives asynchronous data from the device. Size is equal to or less than ASYNC_DATA_SIZE. The
client should constantly have a call into the driver with this IOCTL. The driver stores a limited amount of
asynchronous data.
#define IOCTL_USB_PACKET_SIZE CTL_CODE(FILE_DEVICE_UNKNOWN, 0x851, METHOD_BUFFERED,
FILE_ANY_ACCESS)

Output buffer receives 4-byte USB packet size. Client is responsible for sending a zero length transfer if the amount of
data sent to the device is an integral multiple of the USB packet size.

4 Link Protocols

4.1 L000 – Basic Link Protocol

All devices implement the Basic Link Protocol. Its primary purpose is to facilitate initial communication between the
host and the device using the Product Data Protocol (see section 6.1 on page 8), which allows the host to determine
which type of device is connected. Using this knowledge, the host can then determine which device-specific Link
protocol to use for all other communication with the device.

4.1.1 Basic Packet IDs

The Basic Packet ID values are defined using the enumerations shown below:
enum
 {
 Pid_Protocol_Array = 253, /* may not be implemented in all devices */
 Pid_Product_Rqst = 254,
 Pid_Product_Data = 255,
 Pid_Ext_Product_Data = 248 /* may not be implemented in all devices */
 };

4.2 L001 – Link Protocol 1

 8.2This Link protocol is used for the majority of devices (see section on page 60). This protocol is the same as L000
– Basic Link Protocol, except that the following Packet IDs are used in addition to the Basic Packet IDs:

 Page 5 001-00063-00 Rev. C

enum
 {
 Pid_Command_Data = 10,
 Pid_Xfer_Cmplt = 12,
 Pid_Date_Time_Data = 14,
 Pid_Position_Data = 17,
 Pid_Prx_Wpt_Data = 19,
 Pid_Records = 27,
 Pid_Rte_Hdr = 29,
 Pid_Rte_Wpt_Data = 30,
 Pid_Almanac_Data = 31,
 Pid_Trk_Data = 34,
 Pid_Wpt_Data = 35,
 Pid_Pvt_Data = 51,
 Pid_Rte_Link_Data = 98,
 Pid_Trk_Hdr = 99,
 Pid_FlightBook_Record = 134,
 Pid_Lap = 149,
 Pid_Wpt_Cat = 152,
 Pid_Run = 990,
 Pid_Workout = 991,
 Pid_Workout_Occurrence = 992,
 Pid_Fitness_User_Profile = 993,
 Pid_Workout_Limits = 994,
 Pid_Course = 1061,
 Pid_Course_Lap = 1062,
 Pid_Course_Point = 1063,
 Pid_Course_Trk_Hdr = 1064,
 Pid_Course_Trk_Data = 1065,
 Pid_Course_Limits = 1066
 };

4.3 L002 – Link Protocol 2

 8.2This Link protocol is used mainly for panel-mounted aviation devices (see section on page 60). This protocol is
the same as L000 – Basic Link Protocol, except that the following Packet IDs are used in addition to the Basic Packet
IDs:
enum
 {
 Pid_Almanac_Data = 4,
 Pid_Command_Data = 11,
 Pid_Xfer_Cmplt = 12,
 Pid_Date_Time_Data = 20,
 Pid_Position_Data = 24,
 Pid_Prx_Wpt_Data = 27,
 Pid_Records = 35,
 Pid_Rte_Hdr = 37,
 Pid_Rte_Wpt_Data = 39,
 Pid_Wpt_Data = 43
 };

5 Overview of Application Protocols

Each Application protocol has a unique Protocol ID to allow it to be identified apart from the others. Future devices
may introduce additional protocols to transfer new data types or to provide a newer version of an existing protocol (e.g.,
protocol A101 might be introduced as a newer version of protocol A100). Whenever a new protocol is introduced, it is
expected that the host software will have to be updated to accommodate the new protocol. However, new devices may
continue to support some of the older protocols, so full or partial communication may still be possible with older host
software. To better support this capability, newer devices are able to report which protocols they support (see section

 Page 6 001-00063-00 Rev. C

 6.2 on page 9). In all other cases, the host must contain a lookup table to determine which protocols to use with
which device types (see section 8.2 on page 60).

5.1 Undocumented Application Packets

A device may transmit application packets containing packet IDs that are not documented in this specification. These
packets are used for internal testing purposes by Garmin engineering. Their contents are subject to change at any time
and should not be used by third-party applications for any purpose. They should be handled according to the physical
protocols described in this specification and then discarded.

5.2 Packet Sequences

Each of the Application protocols is defined in terms of a packet sequence, which defines the order and types of
packets exchanged between two devices, including direction of the packet, Packet ID, and packet data type. An
example of a packet sequence is shown below:

Table 7 – Example Packet Sequence

N Direction Packet ID Packet Data Type
0 Device1 to Device2 Pid_First First_Data_Type
1 Device1 to Device2 Pid_Second ignored
2 Device1 to Device2 Pid_Third <D0>
3 Device2 to Device1 Pid_Fourth <D1>
4 Device2 to Device1 Pid_Fifth <D2>

In this example, there are five packets exchanged: three from Device1 to Device2 and two in the other direction. Each
of these five packets must be acknowledged, but the acknowledgement packets are omitted from the table for clarity.
Most of the protocols are symmetric, meaning that the protocol for transfers in one direction (e.g., Device to Host) is
the same as the protocol for transfers in the other direction (e.g., Host to Device). For symmetric protocols, either the
device or the host may assume the role of Device1 or Device2. For non-symmetric protocols, the sequence table will
explicitly show the roles of the device and host instead of showing Device1 and Device2.

The first column of the table shows the packet number (used only for reference; this number is not encoded into the
packet). The second column shows the direction of each packet transfer. The third column shows the Packet ID
enumeration name (to determine the actual value for a Packet ID, see section 3.2.3 on page 3). The last column shows
the Packet Data Type.

5.3 Packet Data Types

The Packet Data Type may be specified in several different ways. First, it may be specified with an explicitly-named
data type (e.g., “First_Data_Type”); all explicitly-named data types are defined in this document. Second, it may
indicate that the packet data is not used (e.g., “ignored”), in which case the packet data may have a zero size. Finally,
the data type for a packet may be specified using angle-bracket notation (e.g. <D0>). This notation indicates that the
data type is device-specific. In the example above, there are three device-specific data types (<D0>, <D1>, and <D2>).

These device-specific data types must be determined dynamically by the host depending on which type of device is
currently connected. For older devices, this determination is made through the use of a lookup table within the host (see
section 8.2 on page 60), however, newer devices are able to dynamically report their protocols and data types (see
section 6.2 on page 9).

 Page 7 001-00063-00 Rev. C

5.4 Standard Beginning and Ending Packets

Many Application protocols use standard beginning and ending packets called Pid_Records and Pid_Xfer_Cmplt,
respectively, as shown in the table below:

Table 8 – Standard Beginning and Ending Packets

N Direction Packet ID Packet Data Type
0 Device1 to Device2 Pid_Records Records_Type
… … … …
n-1 Device1 to Device2 Pid_Xfer_Cmplt Command_Id_Type

The first packet (Packet 0) provides Device2 with an indication of the number of data packets to follow, excluding the
Pid_Xfer_Cmplt packet (i.e., Packet 1 through n-2). This allows Device2 to monitor the progress of the transfer. The
last packet (Packet n-1) indicates that the transfer is complete. This last packet also contains data to indicate which kind
of transfer has been completed in the Command_Id_Type data type (see section 6.3 on page 11).

The Command_Id_Type value for each kind of transfer matches the command ID used to initiate that kind of transfer
(see section 6.3 on page 11). As a result, the actual Command_Id_Type value depends on which Device Command
protocol is implemented by the device. Because of this dependency, enumeration names (not values) for
Command_Id_Type are given in the description of each Application protocol later in this document.

5.4.1 Records_Type

The Records_Type contains a 16-bit integer that indicates the number of data packets to follow, excluding the
Pid_Xfer_Cmplt packet. The type definition for the Records_Type is shown below:
typedef uint16 Records_Type;

5.5 Device Overwriting of Identically-Named Data

When receiving data from the host, some devices will erase identically-named data and replace it with the new data
received from the host. For example, if the host sends a waypoint named XYZ, these devices will overwrite the
waypoint named XYZ that was previously stored in device memory. No warning is sent from the device prior to
overwriting identically-named data.

Other devices have special handling for identically-named waypoints. These devices may compare the position of the
incoming waypoint with the position of the existing waypoint, for instance (Note: altitude is ignored during the
comparison). If the positions match, the device will erase the identically-named waypoint and replace it with the new
waypoint received from the host. If the positions differ, the device will create a new, unique name for the incoming
waypoint and preserve the existing waypoint under the original name. There is no mechanism available for the host to
determine which method a device uses for waypoints (overwriting vs. unique naming).

6 Application Protocols

6.1 A000 – Product Data Protocol

All devices are required to implement the Product Data Protocol using the default physical and basic link protocols
described earlier in this document. The Product Data Protocol is used to query the device to find out its Product ID,
which is then used by the host to determine which data transfer protocols are supported by the connected device (see
section 8.2 on page 60).

 Page 8 001-00063-00 Rev. C

The packet sequence for the Product Data Protocol is shown below:

Table 9 – A000 Protocol Data Protocol Packet Sequence

N Direction Packet ID Packet Data Type
0 Host to Device Pid_Product_Rqst ignored
1 Device to Host Pid_Product_Data Product_Data_Type�
2 Device to Host Pid_Ext_Product_Data Ext_Product_Data_Type
… … … …
N-1 Device to Host Pid_Ext_Product_Data Ext_Product_Data_Type

Packet 0 (Pid_Product_Rqst) is a special product request packet that is sent to the device. Packet 1 (Pid_Product_Data)
is returned to the host and contains data to identify the device, which is provided in the data type Product_Data_Type.
Packets 2 (Pid_Ext_Product_Data) through N-1 (Pid_Ext_Product_Data) are not implemented by all devices and
contain additional information about the device as provided in the data type Ext_Product_Data_Type.

6.1.1 Product_Data_Type

The Product_Data_Type contains two 16-bit integers followed by one or more null-terminated strings. The first integer
indicates the Product ID, and the second integer indicates the software version number multiplied by 100 (e.g., version
3.11 will be indicated by 311 decimal). Following these integers, there will be one or more null-terminated strings. The
first string provides a textual description of the device and its software version; this string is intended to be displayed
by the host to the user in an “about” dialog box. The host should ignore all subsequent strings; they are used during
manufacturing to identify other properties of the device and are not formatted for display to the end user.

The type definition for the Product_Data_Type is shown below:
typedef struct
 {
 uint16 product_ID;
 sint16 software_version;
/* char product_description[]; null-terminated string */
/* ... zero or more additional null-terminated strings */
 } Product_Data_Type;

6.1.2 Ext_Product_Data_Type

The Ext_Product_Data_Type contains zero or more null-terminated strings. The host should ignore all these strings;
they are used during manufacturing to identify other properties of the device and are not formatted for display to the
end user.
typedef struct
 {
/* ... zero or more additional null-terminated strings */
 } Ext_Product_Data_Type;

6.2 A001 – Protocol Capability Protocol

The Protocol Capability Protocol is a one-way protocol that allows a device to report its protocol capabilities and
device-specific data types to the host. When this protocol is supported by the device, it is automatically initiated by the
device immediately after completion of the Product Data Protocol. Using this protocol, the host obtains a list of all
protocols and data types supported by the device.

 Page 9 001-00063-00 Rev. C

The packet sequence for the Protocol Capability Protocol is shown below:

Table 10 – A001 Protocol Capability Protocol Packet Sequence

N Direction Packet ID Packet Data Type
0 Device to Host Pid_Protocol_Array Protocol_Array_Type

Packet 0 (Pid_Protocol_Array) contains an array of Protocol_Data_Type structures, each of which contains tag-
encoded protocol information.

The order of array elements is used to associate data types with protocols. For example, a protocol that requires two
data types <D0> and <D1> is indicated by a tag-encoded protocol ID followed by two tag-encoded data type IDs,
where the first data type ID identifies <D0> and the second data type ID identifies <D1>.

6.2.1 Protocol_Array_Type

The Protocol_Array_Type is an array of Protocol_Data_Type structures. The number of Protocol_Data_Type
structures contained in the array is determined by observing the size of the received packet data.
typedef Protocol_Data_Type Protocol_Array_Type[];

6.2.2 Protocol_Data_Type

The Protocol_Data_Type is comprised of a one-byte tag field and a two-byte data field. The tag identifies which kind
of ID is contained in the data field, and the data field contains the actual ID.
typedef struct
 {
 uint8 tag;
 uint16 data;
 } Protocol_Data_Type;

The combination of tag value and data value must correspond to one of the protocols or data types specified in this
document. For example, this document specifies a Waypoint Transfer Protocol identified as “A100.” This protocol is
represented by a tag value of ‘A’ and a data field value of 100.

6.2.3 Tag Values for Protocol_Data_Type

The enumerated values for the tag member of the Protocol_Data_Type are shown below. The characters shown are
translated to numeric values using the ASCII character set.
enum
 {
 Tag_Phys_Prot_Id = ‘P’, /* tag for Physical protocol ID */
 Tag_Link_Prot_Id = ‘L’, /* tag for Link protocol ID */
 Tag_Appl_Prot_Id = ‘A’, /* tag for Application protocol ID */
 Tag_Data_Type_Id = ‘D’ /* tag for Data Type ID */
 };

 Page 10 001-00063-00 Rev. C

6.2.4 Protocol Capabilities Example

The following table shows a series of three-byte records that might be received by a host during the Protocol
Capabilities Protocol:

Table 11 – Protocol Capabilities Example

Tag (byte 0) Data (bytes 1 & 2) Notes
'L' 1 Device supports Link Protocol 1 (L001)
'A' 10 Device supports Device Command Protocol 1 (A010)
'A' 100 Device supports the Waypoint Transfer Protocol (A100)
'D' 100 Device uses Data Type D100 for <D0> during waypoint transfer
'A' 200 Device supports the Route Transfer Protocol (A200)
'D' 200 Device uses Data Type D200 for <D0> during route transfer
'D' 100 Device uses Data Type D100 for <D1> during route transfer
'A' 300 Device supports the Track Log Transfer Protocol (A300)
'D' 300 Device uses Data Type D300 for <D0> during track log transfer
'A' 500 Device supports the Almanac Transfer Protocol (A500)
'D' 500 Device uses Data Type D500 for <D0> during almanac transfer

The device omits the following protocols from the above transmission:

A000 – Product Data Protocol
A001 – Protocol Capability Protocol

A000 is omitted because all devices support it. A001 is omitted because it is the very protocol being used to
communicate the protocol information.

6.3 Device Command Protocols

This section describes a group of similar protocols known as Device Command protocols. These protocols are used to
send commands to a device; for example, the host might command the device to transmit its waypoints. All devices are
required to implement one of the Device Command protocols, although some commands may not be implemented by
the device (reception of an unimplemented command causes no error in the device; it simply ignores the command).
The only difference among Device Command protocols is that the enumerated values for the Command_Id_Type are
different (see the section for each Device Command protocol below).

Note that either the host or device is allowed to initiate a transfer without a command from the other device (for
example, when the host transfers data to the device, or when the user presses buttons on the device to initiate a transfer).

The packet sequence for each Device Command protocol is shown below:

Table 12 – Device Command Protocol Packet Sequence

N Direction Packet ID Packet Data Type
0 Device1 to Device2 Pid_Command_Data Command_Id_Type

Packet 0 (Pid_Command_Data) contains data to indicate a command, which is provided in the data type
Command_Id_Type. The Command_Id_Type contains a 16-bit integer that indicates a particular command. The type
definition for Command_Id_Type is shown below:
typedef uint16 Command_Id_Type;

6.3.1 A010 – Device Command Protocol 1

 8.2This protocol is implemented by the majority of devices (see section on page 60). The enumerated values for
Command_Id_Type are shown below:

 Page 11 001-00063-00 Rev. C

enum
 {
 Cmnd_Abort_Transfer = 0, /* abort current transfer */
 Cmnd_Transfer_Alm = 1, /* transfer almanac */
 Cmnd_Transfer_Posn = 2, /* transfer position */
 Cmnd_Transfer_Prx = 3, /* transfer proximity waypoints */
 Cmnd_Transfer_Rte = 4, /* transfer routes */
 Cmnd_Transfer_Time = 5, /* transfer time */
 Cmnd_Transfer_Trk = 6, /* transfer track log */
 Cmnd_Transfer_Wpt = 7, /* transfer waypoints */
 Cmnd_Turn_Off_Pwr = 8, /* turn off power */
 Cmnd_Start_Pvt_Data = 49, /* start transmitting PVT data */
 Cmnd_Stop_Pvt_Data = 50, /* stop transmitting PVT data */
 Cmnd_FlightBook_Transfer = 92, /* transfer flight records */
 Cmnd_Transfer_Laps = 117, /* transfer fitness laps */
 Cmnd_Transfer_Wpt_Cats = 121, /* transfer waypoint categories */
 Cmnd_Transfer_Runs = 450, /* transfer fitness runs */
 Cmnd_Transfer_Workouts = 451, /* transfer workouts */
 Cmnd_Transfer_Workout_Occurrences = 452, /* transfer workout occurrences */
 Cmnd_Transfer_Fitness_User_Profile = 453, /* transfer fitness user profile */
 Cmnd_Transfer_Workout_Limits = 454, /* transfer workout limits */
 Cmnd_Transfer_Courses = 561, /* transfer fitness courses */
 Cmnd_Transfer_Course_Laps = 562, /* transfer fitness course laps */
 Cmnd_Transfer_Course_Points = 563, /* transfer fitness course points */
 Cmnd_Transfer_Course_Tracks = 564, /* transfer fitness course tracks */
 Cmnd_Transfer_Course_Limits = 565 /* transfer fitness course limits */
 };

Note: The “Cmnd_Turn_Off_Pwr” command may not be acknowledged by the device.

Note: The PC can send Cmnd_Abort_Transfer in the middle of a transfer of data to the device in order to cancel the
transfer.

6.3.2 A011 – Device Command Protocol 2

 8.2This protocol is implemented mainly by panel-mounted aviation devices (see section on page 60). The
enumerated values for Command_Id_Type are shown below:
enum
 {
 Cmnd_Abort_Transfer = 0, /* abort current transfer */
 Cmnd_Transfer_Alm = 4, /* transfer almanac */
 Cmnd_Transfer_Rte = 8, /* transfer routes */
 Cmnd_Transfer_Prx = 17, /* transfer proximity waypoints */
 Cmnd_Transfer_Time = 20, /* transfer time */
 Cmnd_Transfer_Wpt = 21, /* transfer waypoints */
 Cmnd_Turn_Off_Pwr = 26 /* turn off power */
 };

6.4 A100 – Waypoint Transfer Protocol

The Waypoint Transfer Protocol is used to transfer waypoints between devices. When the host commands the device to
send waypoints, the device will send every waypoint stored in its database. When the host sends waypoints to the
device, the host may selectively transfer any waypoint it chooses.

 Page 12 001-00063-00 Rev. C

The packet sequence for the Waypoint Transfer Protocol is shown below:

Table 13 – A100 Waypoint Transfer Protocol Packet Sequence

N Direction Packet ID Packet Data Type
0 Device1 to Device2 Pid_Records Records_Type
1 Device1 to Device2 Pid_Wpt_Data <D0>
2 Device1 to Device2 Pid_Wpt_Data <D0>
… … … …
n-2 Device1 to Device2 Pid_Wpt_Data <D0>
n-1 Device1 to Device2 Pid_Xfer_Cmplt Command_Id_Type

 5.4The first and last packets (Packet 0 and Packet n-1) are the standard beginning and ending packets (see section on
page 8). The Command_Id_Type value contained in Packet n-1 is Cmnd_Transfer_Wpt, which is also the command
value used by the host to initiate a transfer of waypoints from the device.

Packets 1 through n-2 (Pid_Wpt_Data) each contain data for one waypoint, which is provided in device-specific data
type <D0>. This data type usually contains an identifier string, latitude and longitude, and other device-specific data.

6.5 A101 – Waypoint Category Transfer Protocol

The Waypoint Category Transfer Protocol is used to transfer waypoint categories between devices. When a device is
commanded to send waypoint categories, the device will send every waypoint category stored in its database.

The packet sequence for the Waypoint Category Transfer Protocol is shown below:

Table 14 – A101 Waypoint Category Transfer Protocol Packet Sequence

N Direction Packet ID Packet Data Type
0 Device1 to Device2 Pid_Records Records_Type
1 Device1 to Device2 Pid_Wpt_Cat <D0>
2 Device1 to Device2 Pid_Wpt_Cat <D0>
… … … …
n-2 Device1 to Device2 Pid_Wpt_Cat <D0>
n-1 Device1 to Device2 Pid_Xfer_Cmplt Command_Id_Type

 5.4The first and last packets (Packet 0 and Packet n-1) are the standard beginning and ending packets (see section on
page 8). The Command_Id_Type value contained in Packet n-1 is Cmnd_Transfer_Wpt_Cats, which is also the
command value used by the host to initiate a transfer of waypoint categories from the device.

Packets 1 through n-2 (Pid_Wpt_Cat) each contain data for one waypoint category, which is provided in device-
specific data type <D0>. The order of packets 1 through n-2 indicates the association of the data received with a
particular category. For example, packet 1 contains data associated with category 1, packet 3 is associated with
category 3, etc. Each device will be capable of containing some maximum number of waypoint categories. If a device
receives more data packets than its maximum then it should ignore those data packets beyond its maximum.

6.6 Route Transfer Protocol

The Route Transfer Protocol is used to transfer routes between devices. When the host commands the device to send
routes, the device will send every route stored in its database. When the host sends routes to the device, the host may
selectively transfer any route it chooses.

6.6.1 Database Matching for Route Waypoints

Certain devices contain an internal database of waypoint information; for example, most aviation devices have an
internal database of aviation waypoints, and the StreetPilot has an internal database of land waypoints. When routes are
being transferred from the host to one of these devices, the device will attempt to match the incoming route waypoints

 Page 13 001-00063-00 Rev. C

with waypoints in its internal database. First, the device inspects the “wpt_class” member of the incoming route
waypoint; if it indicates a non-user waypoint, then the device searches its internal database using values contained in
other members of the route waypoint. For aviation devices, the “ident” and “cc” members are used to search the
internal database; for the StreetPilot, the “subclass” member is used to search the internal database. If a match is found,
the waypoint from the internal database is used for the route; otherwise, a new user waypoint is created and used for the
route.

6.6.2 A200 – Route Transfer Protocol

The packet sequence for the A200 Route Transfer Protocol is shown below:

Table 15 – A200 Route Transfer Protocol Packet Sequence

N Direction Packet ID Packet Data Type
0 Device1 to Device2 Pid_Records Records_Type
1 Device1 to Device2 Pid_Rte_Hdr <D0>
2 Device1 to Device2 Pid_Rte_Wpt_Data <D1>
3 Device1 to Device2 Pid_Rte_Wpt_Data <D1>
… … … …
n-2 Device1 to Device2 Pid_Rte_Wpt_Data <D1>
n-1 Device1 to Device2 Pid_Xfer_Cmplt Command_Id_Type

 5.4The first and last packets (Packet 0 and Packet n-1) are the standard beginning and ending packets (see section on
page 8). The Command_Id_Type value contained in Packet n-1 is Cmnd_Transfer_Rte, which is also the command
value used by the host to initiate a transfer of routes from the device.

Packet 1 (Pid_Rte_Hdr) contains route header information, which is provided in device-specific data type <D0>. This
data type usually contains information that uniquely identifies the route. Packets 2 through n-2 (Pid_Rte_Wpt_Data)
each contain data for one route waypoint, which is provided in device-specific data type <D1>. This data type usually
contains the same waypoint data that is transferred in the Waypoint Transfer Protocol.

More than one route can be transferred during the protocol by sending another set of packets that resemble Packets 1
through n-2 in the table above. This additional set of packets is sent immediately after the previous set of route packets.
In other words, it is not necessary to send Pid_Xfer_Cmplt until all route packets have been sent for the multiple routes.
Device2 must monitor the Packet ID to detect the beginning of a new route, which is indicated by a Packet ID equal to
Pid_Rte_Hdr. Any number of routes may be transferred in this fashion.

6.6.3 A201 – Route Transfer Protocol

The packet sequence for the A201 Route Transfer Protocol is shown below:

Table 16 – A201 Route Transfer Protocol Packet Sequence

N Direction Packet ID Packet Data Type
0 Device1 to Device2 Pid_Records Records_Type
1 Device1 to Device2 Pid_Rte_Hdr <D0>
2 Device1 to Device2 Pid_Rte_Wpt_Data <D1>
3 Device1 to Device2 Pid_Rte_Link_Data <D2>
4 Device1 to Device2 Pid_Rte_Wpt_Data <D1>
5 Device1 to Device2 Pid_Rte_Link_Data <D2>
… … … …
n-2 Device1 to Device2 Pid_Rte_Wpt_Data <D1>
n-1 Device1 to Device2 Pid_Xfer_Cmplt Command_Id_Type

 5.4The first and last packets (Packet 0 and Packet n-1) are the standard beginning and ending packets (see section on
page 8). The Command_Id_Type value contained in Packet n-1 is Cmnd_Transfer_Rte, which is also the command
value used by the host to initiate a transfer of routes from the device.

 Page 14 001-00063-00 Rev. C

Packet 1 (Pid_Rte_Hdr) contains route header information, which is provided in device-specific data type <D0>. This
data type usually contains information that uniquely identifies the route. Even numbered packets starting with packet 2
contain data for one route waypoint, which is provided in device-specific data type <D1>. Odd numbered packets
starting with packet 3 and excluding packet n-1 (Pid_Xfer_Cmplt) contain data for one link between the adjacent
waypoints. This link data is provided in device-specific data type <D2>.

More than one route can be transferred during the protocol by sending another set of packets that resemble Packets 1
through n-2 in the table above. This additional set of packets is sent immediately after the previous set of route packets.
In other words, it is not necessary to send Pid_Xfer_Cmplt until all route packets have been sent for the multiple routes.
Device2 must monitor the Packet ID to detect the beginning of a new route, which is indicated by a Packet ID equal to
Pid_Rte_Hdr. Any number of routes may be transferred in this fashion.

6.7 Track Log Transfer Protocol

6.7.1 Time Values Ignored by Device

When the host transfers a track log to the device, the device ignores the incoming time value for each track log point
and sets the time value to zero in its internal database. If the device later transfers the track log back to the host, the
time values will be zero. Thus, the host is able to differentiate between track logs that were actually recorded by the
device and track logs that were transferred to the device by an external host.

NOTE: Some devices use 0x7FFFFFFF or 0xFFFFFFFF instead of zero to indicate an invalid time value.

6.7.2 A300 – Track Log Transfer Protocol

The Track Log Transfer Protocol is used to transfer track logs between devices. Some devices store only one track log
(called the “active” track log), however, other devices can store multiple track logs (in addition to the active track log).
When the host commands the device to send track logs, the device will concatenate all track logs (i.e., the active track
log plus any stored track logs) to form one track log consisting of multiple segments; i.e., the protocol does not provide
a way for the host to request selective track logs from the device, nor is there a way for the host to decompose the
concatenated track log into its original set of track logs. When the host sends track logs to the device, the track log is
always stored in the active track log within the device; i.e., there is no way to transfer track logs into the database of
stored track logs. None of these limitations affect devices that store only one track log.

The packet sequence for the Track Log Transfer Protocol is shown below:

Table 17 – A300 Track Log Transfer Protocol Packet Sequence

N Direction Packet ID Packet Data Type
0 Device1 to Device2 Pid_Records Records_Type
1 Device1 to Device2 Pid_Trk_Data <D0>
2 Device1 to Device2 Pid_Trk_Data <D0>
… … … …
n-2 Device1 to Device2 Pid_Trk_Data <D0>
n-1 Device1 to Device2 Pid_Xfer_Cmplt Command_Id_Type

 5.4The first and last packets (Packet 0 and Packet n-1) are the standard beginning and ending packets (see section on
page 8). The Command_Id_Type value contained in Packet n-1 is Cmnd_Transfer_Trk, which is also the command
value used by the host to initiate a transfer of track logs from the device.

Packets 1 through n-2 (Pid_Trk_Data) each contain data for one track log point, which is provided in device-specific
data type <D0>. This data type usually contains four elements: latitude, longitude, time, and a boolean flag indicating
whether the point marks the beginning of a new track log segment.

 Page 15 001-00063-00 Rev. C

6.7.3 A301 – Track Log Transfer Protocol

The packet sequence for the Track Log Transfer Protocol is shown below:

Table 18 – A301 Track Log Transfer Protocol Packet Sequence

N Direction Packet ID Packet Data Type
0 Device1 to Device2 Pid_Records Records_Type
1 Device1 to Device2 Pid_Trk_Hdr <D0>
2 Device1 to Device2 Pid_Trk_Data <D1>
3 Device1 to Device2 Pid_Trk_Data <D1>
… … … …
n-2 Device1 to Device2 Pid_Trk_Data <D1>
n-1 Device1 to Device2 Pid_Xfer_Cmplt Command_Id_Type

 5.4The first and last packets (Packet 0 and Packet n-1) are the standard beginning and ending packets (see section on
page 8). The Command_Id_Type value contained in Packet n-1 is Cmnd_Transfer_Trk, which is also the command
value used by the host to initiate a transfer of track logs from the device.

Packet 1 (Pid_Trk_Hdr) contains track header information, which is provided in device-specific data type <D0>. This
data type usually contains information that uniquely identifies the track log. Packets 2 through n-2 (Pid_Trk_Data)
each contain data for one track log point, which is provided in device-specific data type <D1>.

More than one track log can be transferred during the protocol by sending another set of packets that resemble packets
1 through n-2 in the table above. This additional set of packets is sent immediately after the previous set of track log
packets. In other words, Pid_Xfer_Cmplt must not be sent until all track log packets have been sent for the multiple
track logs. Device2 must monitor the Packet ID to detect the beginning of a new track log, which is indicated by a
Packet ID of Pid_Trk_Hdr. Any number of track logs may be transferred in this fashion.

6.7.4 A302 – Track Log Transfer Protocol

The A302 Track Log Transfer Protocol is used in fitness devices to transfer tracks from the device to the Host. The
packet sequence for the protocol is identical to A301, except that the Host may only receive tracks from the device, and
not send them.

6.8 A400 – Proximity Waypoint Transfer Protocol

The Proximity Waypoint Transfer Protocol is used to transfer proximity waypoints between devices. When the host
commands the device to send proximity waypoints, the device will send all proximity waypoints stored in its database.
When the host sends proximity waypoints to the device, the host may selectively transfer any proximity waypoint it
chooses.

The packet sequence for the Proximity Waypoint Transfer Protocol is shown below:

Table 19 – A400 Proximity Waypoint Transfer Protocol Packet Sequence

N Direction Packet ID Packet Data Type
0 Device1 to Device2 Pid_Records Records_Type
1 Device1 to Device2 Pid_Prx_Wpt_Data <D0>
2 Device1 to Device2 Pid_Prx_Wpt_Data <D0>
… … … …
n-2 Device1 to Device2 Pid_Prx_Wpt_Data <D0>
n-1 Device1 to Device2 Pid_Xfer_Cmplt Command_Id_Type

 5.4The first and last packets (Packet 0 and Packet n-1) are the standard beginning and ending packets (see section on
page 8). The Command_Id_Type value contained in Packet n-1 is Cmnd_Transfer_Prx, which is also the command
value used by the host to initiate a transfer of proximity waypoints from the device.

 Page 16 001-00063-00 Rev. C

Packets 1 through n-2 (Pid_Prx_Wpt_Data) each contain data for one proximity waypoint, which is provided in device-
specific data type <D0>. This data type usually contains the same waypoint data that is transferred during the Waypoint
Transfer Protocol, plus a valid proximity alarm distance.

Some devices (e.g. aviation panel mounts) require a delay of one or more seconds between proximity waypoints when
the host transfers proximity waypoints to the device.

6.9 A500 – Almanac Transfer Protocol

The Almanac Transfer Protocol is used to transfer almanacs between devices. The main purpose of this protocol is to
allow a host to update a device that has been in storage for more than six months, or has undergone a memory clear
operation. To avoid a potentially lengthy auto-initialization sequence, the device must have current almanac,
approximate date and time, and approximate position. Thus, after transferring an almanac to the device, the host should
subsequently transfer the date, time, and position (in that order) to the device using the following protocols: A600 –
Date and Time Initialization Protocol (see section 6.10 on page 17), and A700 – Position Initialization Protocol (see
section 6.12 on page 18). After receiving the almanac, the device may transmit a request for time and/or a request for
position using one of the Device Command protocols.

The device is also able to transmit almanac to the host, allowing the user to archive the almanac or transfer the almanac
to another device.

The packet sequence for the Almanac Transfer Protocol is shown below:

Table 20 – A500 Almanac Transfer Protocol Packet Sequence

N Direction Packet ID Packet Data Type
0 Device1 to Device2 Pid_Records Records_Type
1 Device1 to Device2 Pid_Almanac_Data <D0>
2 Device1 to Device2 Pid_Almanac_Data <D0>
… … … …
n-2 Device1 to Device2 Pid_Almanac_Data <D0>
n-1 Device1 to Device2 Pid_Xfer_Cmplt Command_Id_Type

 5.4The first and last packets (Packet 0 and Packet n-1) are the standard beginning and ending packets (see section on
page 8). The Command_Id_Type value contained in Packet n-1 is Cmnd_Transfer_Alm, which is also the command
value used by the host to initiate a transfer of the almanac from the device

Packets 1 through n-2 (Pid_Almanac_Data) each contain almanac data for one satellite, which is provided in device-
specific data type <D0>. This data type contains data that describes the satellite’s orbit characteristics.

Some device-specific data types (<D0>) do not include a satellite ID to relate each data packet to a particular satellite
in the GPS constellation. For these data types, Device1 must transmit exactly 32 Pid_Almanac_Data packets, and these
packets must be sent in PRN order (i.e., the first packet contains data for PRN-01 and so on up to PRN-32). If the data
for a particular satellite is missing or if the satellite is non-existent, then the week number for that satellite must be set
to a negative number to indicate that the data is invalid.

6.10 A600 – Date and Time Initialization Protocol

The Date and Time Initialization Protocol is used to transfer the current date and time between devices. This is
normally done in conjunction with transferring an almanac to the device (see section 6.9 on page 17).

 Page 17 001-00063-00 Rev. C

The packet sequence for the Date and Time Initialization Protocol is shown below:

Table 21 – A600 Date and Time Initialization Protocol Packet Sequence

N Direction Packet ID Packet Data Type
0 Device1 to Device2 Pid_Date_Time_Data <D0>

Packet 0 (Pid_Date_Time_Data) contains date and time data, which is provided in device-specific data type <D0>.

6.11 A650 – FlightBook Transfer Protocol

The FlightBook Transfer Protocol is used to transfer auto-generated FlightBook data to the host.

The packet sequence for the FlightBook Transfer Protocol is shown below:

Table 22 – A650 FlightBook Transfer Protocol Packet Sequence

N Direction Packet ID Packet Data Type
0 Host to Device Pid_Command_Data Command_Id_Type
1 Device to Host Pid_Records Records_Type
2 Device to Host Pid_FlightBook_Record <D0>
… … … ...
n-2 Device to Host Pid_FlightBook_Record <D0>
n-1 Device to Host Pid_Xfer_Cmplt Command_Id_Type

Packet 0 (Pid_Command_Data) commands the device to initiate a FlightBook transfer. Packets 1 and n-1 are the
standard beginning and ending packets (see section 5.4 on page 8). The Command_Id_Type value in packets 0 and n-
1 is Cmnd_FlightBook_Transfer. Packets 2 through n-2 each contain a FlightBook record using device-specific data
type <D0>.

6.12 A700 – Position Initialization Protocol

The Position Initialization Protocol is used to transfer the current position between devices. This is normally done in
conjunction with transferring an almanac to the device (see section 6.9 on page 17).

The packet sequence for the Position Initialization Protocol is shown below:

Table 23 – A700 Position Initialization Protocol Packet Sequence

N Direction Packet ID Packet Data Type
0 Device1 to Device2 Pid_Position_Data <D0>

Packet 0 (Pid_Position_Data) contains position data, which is provided in device-specific data type <D0>. The device
may ignore the position data provided by this protocol whenever the device has a valid position fix or whenever the
device is in simulator mode.

6.13 A800 – PVT Protocol

The PVT Protocol is used to provide the host with real-time position, velocity, and time (PVT), which is transmitted by
the device approximately once per second. This protocol is provided as an alternative to NMEA so that the user may
permanently choose the Garmin format on the device instead of switching back and forth between NMEA format and
Garmin format.

 6.3The host can turn PVT on or off by using a Device Command Protocol (see section on page 11). PVT is turned on
when the host sends the Cmnd_Start_Pvt_Data command and is turned off when the host sends the
Cmnd_Stop_Pvt_Data command. Note that, as a side effect, most devices turn off PVT whenever they respond to the
Product Data Protocol.

 Page 18 001-00063-00 Rev. C

ACK and NAK packets are optional for this protocol; however, unlike other protocols, the device will not retransmit a
PVT packet in response to receiving a NAK from the host.

The packet sequence for the PVT Protocol is shown below:

Table 24 – A800 PVT Protocol Packet Sequence

N Direction Packet ID Packet Data Type
0 Device to Host (ACK/NAK optional) Pid_Pvt_Data <D0>

Packet 0 (Pid_Pvt_Data) contains position, velocity, and time data, which is provided in device-specific data type
<D0>.

6.14 A906 – Lap Transfer Protocol

The Lap Transfer Protocol is used to transfer fitness laps to the host.

The packet sequence for the Lap Transfer Protocol is shown below:

Table 25 – A906 Lap Transfer Protocol Packet Sequence

N Direction Packet ID Packet Data Type
0 Device to Host Pid_Records Records_Type
1 Device to Host Pid_Lap <D0>
2 Device to Host Pid_Lap <D0>
… … … ...
n-2 Device to Host Pid_Lap <D0>
n-1 Device to Host Pid_Xfer_Cmplt Command_Id_Type

 5.4The first and last packets (Packet 0 and Packet n-1) are the standard beginning and ending packets (see section on
page 8). The Command_Id_Type value contained in Packet n-1 is Cmnd_Transfer_Laps, which is also the command
value used by the host to initiate a transfer of laps from the device.

Packets 1 through n-2 (Pid_Lap) each contain data for one lap, which is provided in device-specific data type <D0>.

6.15 A1000 – Run Transfer Protocol

The Run Transfer Protocol is used to transfer fitness runs to the host.

 Page 19 001-00063-00 Rev. C

The packet sequence for the Run Transfer Protocol is shown below:

Table 26 – A1000 Run Transfer Protocol Packet Sequence

N Direction Packet ID Packet Data Type
0 Host to Device Pid_Command_Data Command_Id_Type
1 Device to Host Pid_Records Records_Type
2 Device to Host Pid_Run <D0>
… … … …
k-2 Device to Host Pid_Run <D0>
k-1 Device to Host Pid_Xfer_Cmplt Command_Id_Type
k Host to Device Pid_Command_Data Command_Id_Type
k+1 Device to Host Pid_Records Records_Type
k+2 Device to Host Pid_Lap <Lap_Type>
… … … …
m-2 Device to Host Pid_Lap <Lap_Type>
m-1 Device to Host Pid_Xfer_Cmplt Command_Id_Type
m Host to Device Pid_Command_Data Command_Id_Type
m+1 Device to Host Pid_Records Records_Type
m+2 Device to Host Pid_Trk_Hdr <Trk_Hdr_Type>
m+3 Device to Host Pid_Trk_Data <Trk_Data_Type>
… … … …
n-2 Device to Host Pid_Trk_Data <Trk_Data_Type>
n-1 Device to Host Pid_Xfer_Cmplt Command_Id_Type

The first and last packets for each transfer sequence (Packet 1 and Packet k-1, Packet k+1 and Packet m-1, and Packet
m+1 and Packet n-1) are the standard beginning and ending packets (see section 5.4 on page 8). The
Command_Id_Type value contained in Packet 0 and Packet k-1 is Cmnd_Transfer_Runs. The Command_Id_Type
value contained in Packet k and Packet m-1 is Cmnd_Transfer_Laps. The Command_Id_Type value contained in
Packet m and Packet n-1 is Cmnd_Transfer_Trk.

Packets 2 through k-2 (Pid_Run) each contain data for one run, which is provided in device-specific data type <D0>.
Packets k+2 through m-2 (Pid_Lap) each contain data for one lap, which is provided in device-specific data type
<Lap_Type>. Data type <Lap_Type> is the data type associated with A906 in the Protocol Capability Protocol (see
section 6.2 on page 9). Packet m+2 (Pid_Trk_Hdr) contains track header information, which is provided in device-
specific data type <Trk_Hdr_Type>. Packets m+3 through n-2 each contain data for one track log point, which is
provided in device-specific data type <Trk_Data_Type>. Data types <Trk_Hdr_Type> and <Trk_Data_Type> are the
data types associated with A302 in the Protocol Capability Protocol, as reported by the device.

The device may transfer more than one track log during the protocol by sending another set of packets that resemble
packets m+2 through n-2 in the table above. This additional set of packets is sent immediately after the previous set of
track log packets. In other words, Pid_Xfer_Cmplt will not be sent until all track log packets have been sent for the
multiple track logs. The Host must monitor the Packet ID to detect the beginning of a new track log, which is indicated
by a Packet ID of Pid_Trk_Hdr. Any number of track logs may be transferred in this fashion.

6.16 A1002 – Workout Transfer Protocol

The Workout Transfer Protocol is used to transfer workouts between devices.

 Page 20 001-00063-00 Rev. C

The packet sequence for the Workout Transfer Protocol is shown below:

Table 27 – A1002 Workout Transfer Protocol

N Direction Packet ID Packet Data Type
0* Device1 to Device2 Pid_Command_Data Command_Id_Type
1 Device2 to Device1 Pid_Records Records_Type
2 Device2 to Device1 Pid_Workout <D0>
… … … …
m-2 Device2 to Device1 Pid_Workout <D0>
m-1 Device2 to Device1 Pid_Xfer_Cmplt Command_Id_Type
m* Device1 to Device2 Pid_Command_Data Command_Id_Type
m+1 Device2 to Device1 Pid_Records Records_Type
m+2 Device2 to Device1 Pid_Workout_Occurrence <Workout_Occurrence_Type>
… … … …
n-2 Device2 to Device1 Pid_Workout_Occurrence <Workout_Occurrence_Type>
n-1 Device2 to Device1 Pid_Xfer_Cmplt Command_Id_Type

* This packet is sent only if Device1 is requesting data from Device2.

The first and last packets for each transfer sequence (Packet 1 and Packet m-1, and Packet m+1 and Packet n-1) are the
standard beginning and ending packets (see section 5.4 on page 8). The Command_Id_Type value contained in
Packet 0 and Packet m-1 is Cmnd_Transfer_Workouts. The Command_Id_Type value contained in Packet m and
Packet n-1 is Cmnd_Transfer_Workout_Occurrences.

Packets 2 through m-2 (Pid_Workout) each contain data for one workout, which is provided in device-specific data
type <D0>. Packets m+2 through n-2 each contain data for one workout occurrence, which is provided in device-
specific data type <Workout_Occurrence_Type>. Data type <Workout_Occurrence_Type> is the data type associated
with A1003 in the Protocol Capability Protocol (see section 6.2 on page 9), as reported by the device.

6.17 A1004 – Fitness User Profile Transfer Protocol

The Fitness User Profile Transfer Protocol is used to transfer a fitness user profile between devices.

The packet sequence for the Fitness User Profile Transfer Protocol is shown below:

Table 28 – A1004 Fitness User Profile Transfer Protocol

N Direction Packet ID Packet Data Type
0* Device1 to Device2 Pid_Command_Data Command_Id_Type
1 Device2 to Device1 Pid_Fitness_User_Profile <D0>

* This packet is sent only if Device1 is requesting data from Device2.

The Command_Id_Type value contained in Packet 0 is Cmnd_Transfer_Fitness_User_Profile. Packet1 contains a
fitness user profile, which is provided in device-specific data type <D0>.

6.18 A1005 – Workout Limits Transfer Protocol

The Workout Limits Transfer Protocol is used to transfer limits on workout data to the host.

 Page 21 001-00063-00 Rev. C

The packet sequence for the Workout Limits Transfer Protocol is shown below:

Table 29 – A1005 Workout Limits Transfer Protocol

N Direction Packet ID Packet Data Type
0 Host to Device Pid_Command_Data Command_Id_Type
1 Device to Host Pid_Workout_Limits <D0>

The Command_Id_Type value contained in Packet 0 is Cmnd_Transfer_Workout_Limits. Packet 1 contains the
workout limits, which are provided in device-specific data type <D0>.

6.19 A1006 – Course Transfer Protocol

The Course Transfer Protocol is used to transfer fitness courses between devices.

The packet sequence for the Course Transfer Protocol is shown below:

Table 30 – A1006 Course Transfer Protocol

N Direction Packet ID Packet Data Type
0* Device1 to Device2 Pid_Command_Data Command_Id_Type
1 Device2 to Device1 Pid_Records Records_Type
2 Device2 to Device1 Pid_Course <D0>
… … … …
j-2 Device2 to Device1 Pid_Course <D0>
j-1 Device2 to Device1 Pid_Xfer_Cmplt Command_Id_Type
j* Device1 to Device2 Pid_Command_Data Command_Id_Type
j+1 Device2 to Device1 Pid_Records Records_Type
j+2 Device2 to Device1 Pid_Course_Lap <Crs_Lap_Type>
… … … …
k-2 Device2 to Device1 Pid_Course_Lap <Crs_Lap_Type>
k-1 Device2 to Device1 Pid_Xfer_Cmplt Command_Id_Type
k* Device1 to Device2 Pid_Command_Data Command_Id_Type
k+1 Device2 to Device1 Pid_Records Records_Type
k+2 Device2 to Device1 Pid_Course_Trk_Hdr <Crs_Trk_Hdr_Type>
k+3 Device2 to Device1 Pid_Course_Trk_Data <Crs_Trk_Data_Type>
… … … …
m-2 Device2 to Device1 Pid_Course_Trk_Data <Crs_Trk_Data_Type>
m-1 Device2 to Device1 Pid_Xfer_Cmplt Command_Id_Type
m* Device1 to Device2 Pid_Command_Data Command_Id_Type
m+1 Device2 to Device1 Pid_Records Records_Type
m+2 Device2 to Device1 Pid_Course_Point <Crs_Pt_Type>
… … … …
n-2 Device2 to Device1 Pid_Course_Point <Crs_Pt_Type>
n-1 Device2 to Device1 Pid_Xfer_Cmplt Command_Id_Type

* This packet is sent only if Device1 is requesting data from Device2.

The first and last packets for each transfer sequence (Packet 1 and Packet j-1, Packet j+1 and Packet k-1, Packet k+1
and Packet m-1, and Packet m+1 and Packet n-1) are the standard beginning and ending packets (see section 5.4 on
page 8). The Command_Id_Type value contained in Packet 0 and Packet j-1 is Cmnd_Transfer_Courses. The
Command_Id_Type value contained in Packet j and Packet k-1 is Cmnd_Transfer_Course_Laps. The
Command_Id_Type value contained in Packet k and Packet m-1 is Cmnd_Transfer_Course_Tracks. The
Command_Id_Type value contained in Packet m and Packet n-1 is Cmnd_Transfer_Course_Points.

Packets 2 through j-2 (Pid_Course) each contain data for one course, which is provided in device-specific data type
<D0>. Packets j+2 through k-2 (Pid_Course_Lap) each contain data for one course lap, which is provided in device-

 Page 22 001-00063-00 Rev. C

specific data type <Crs_Lap_Type>. Data type <Crs_Lap_Type> is the data type associated with A1007 in the Protocol
Capability Protocol (see section 6.2 on page 9), as reported by the device. Packet k+2 (Pid_Course_Trk_Hdr)
contains course track header information, which is provided in device-specific data type <Crs_Trk_Hdr_Type>.
Packets k+3 through m-2 each contain data for one course track log point, which is provided in device-specific data
type <Crs_Trk_Data_Type). If the Protocol Capability Protocol on the device reports A1012, then data types
<Crs_Trk_Hdr_Type> and <Crs_Trk_Data_Type> are the first and second data types associated with A1012,
respectively. Otherwise the data types <Crs_Trk_Hdr_Type> and <Crs_Trk_Data_Type> are the data types used by the
A302 Track Transfer Protocol (see section 6.7.4 on page 16). Packets m+2 through n-2 (Pid_Course_Point) each
contain data for one course point, which is provided in device-specific data type <Crs_Pt_Type>. Data type
<Crs_Pt_Type> is the data type associated with A1008 in the Protocol Capability Protocol, as reported by the device.

More than one course track log can be transferred during the protocol by sending another set of packets that resemble
packets k+2 through m-2 in the table above. This additional set of packets is sent immediately after the previous set of
course track log packets. In other words, it is not necessary to send Pid_Xfer_Cmplt until all course track log packets
have been sent for the multiple course track logs. The Host must monitor the Packet ID to detect the beginning of a
new course track log, which is indicated by a Packet ID of Pid_Course_Trk_Hdr. Any number of course track logs may
be transferred in this fashion.

6.20 A1009 – Course Limits Transfer Protocol

The Course Limits Transfer Protocol is used to transfer limits on courses to the host.

The packet sequence for the Course Limits Transfer Protocol is shown below:

Table 31 – A1009 Course Limits Transfer Protocol

N Direction Packet ID Packet Data Type
0 Host to Device Pid_Command_Data Command_Id_Type
1 Device to Host Pid_Course_Limits <D0>

The Command_Id_Type value contained in Packet 0 is Cmnd_Transfer_Course_Limits. Packet 1 contains the course
limits, which are provided in device-specific data type <D0>.

7 Data Types

7.1 Serialization of Data

Every data type must be serialized into a stream of bytes for transferal over a serial data link. Serialization of each data
type is accomplished by transmitting the bytes in the order that they would occur in memory given a machine with the
following characteristics: 1) data structure members are stored in memory in the same order as they appear in the type
definition; 2) all structures are packed, meaning that there are no unused “pad” bytes between structure members; 3)
multibyte numeric types are stored in memory using little-endian format, meaning the least-significant byte occurs first
in memory followed by increasingly significant bytes in successive memory locations.

 Page 23 001-00063-00 Rev. C

7.2 Character Sets

Unless otherwise noted, all devices accept characters from the ASCII character set. Each string type may contain a
specific subset of ASCII characters as shown below:

Table 32 – Character Sets

User Waypoint Identifier: upper-case letters, numbers
Waypoint Comment: upper-case letters, numbers, space, hyphen
Route Comment: upper-case letters, numbers, space, hyphen
City: ignored by device
State: ignored by device
Facility Name: ignored by device
Country Code: upper-case letters, numbers, space
Route Identifier: upper-case letters, numbers, space, hyphen
Route Waypoint Identifier: any ASCII character
Link Identifier: any ASCII character
Track Identifier: upper-case letters, numbers, space, hyphen

Some devices may allow additional characters beyond those mentioned above, but no attempt is made in this document
to identify these device-specific additions.

7.3 Basic Data Types

The following are basic data types that are used in the definition of more complex data types.

7.3.1 char

The char data type is 8 bits in size.

7.3.2 Character Arrays

Unless otherwise noted, all character arrays are padded with spaces and are not required to have a null terminator. For
example, consider the following data type:
char xyz[6]; /* xyz type */

The word “CAT” would be stored in this data type as shown below:
xyz[0] = ‘C’;
xyz[1] = ‘A’;
xyz[2] = ‘T’;
xyz[3] = ‘ ’;
xyz[4] = ‘ ’;
xyz[5] = ‘ ’;

Character arrays provide a way to transfer strings between the host and the device. However, the size of a character
array may exceed the number of characters that a device has allotted for the string being transferred. If this is the case,
the device will ignore any characters beyond the size of its allotted string. For example, a “cmnt” character array may
allow 40 characters to be transferred, but a device may only have 16 characters allotted for a “cmnt” string. In this case,
the device will ignore the last 24 characters of the transferred character array.

7.3.3 Variable-Length Strings

In contrast to character arrays, a variable-length string is a null-terminated string that can be any length as long it does
not cause a data packet to become larger than the maximum allowable data packet size. When a variable-length string
is a member of a data structure, the data type is specified as follows:

 Page 24 001-00063-00 Rev. C

typedef struct
 {
 sint16 abc;
/* char xyz[] null-terminated string */
 sint16 def;
 } example_type;

This syntax indicates that a variable-length string named xyz occurs between the abc and def members of the data
structure. Therefore, the address offset (from the beginning of the data structure) of the def member cannot be known
until run-time (after the variable-length string is decoded). Whenever possible, variable-length strings are placed at the
end of a data structure to minimize the need for run-time address offset calculations.

7.3.4 uint8

The uint8 data type is used for 8-bit unsigned integers.

7.3.5 uint16

The uint16 data type is used for 16-bit unsigned integers.

7.3.6 uint32

The uint32 data type is used for 32-bit unsigned integers.

7.3.7 sint16

The sint16 data type is used for 16-bit signed integers.

7.3.8 sint32

The sint32 data type is used for 32-bit signed integers.

7.3.9 float32

The float32 data type is 32-bit IEEE-format floating point data (1 sign bit, 8 exponent bits, and 23 mantissa bits).

7.3.10 float64

The float64 data type is 64-bit IEEE-format floating point data (1 sign bit, 11 exponent bits, and 52 mantissa bits).

7.3.11 bool

The bool data type is an 8-bit integer used to indicate true (non-zero) or false (zero).

7.3.12 position_type

The position_type is used to indicate latitude and longitude in semicircles, where 231 semicircles equal 180 degrees.
North latitudes and East longitudes are indicated with positive numbers; South latitudes and West longitudes are
indicated with negative numbers.
typedef struct
 {
 sint32 lat; /* latitude in semicircles */
 sint32 lon; /* longitude in semicircles */
 } position_type;

 Page 25 001-00063-00 Rev. C

The following formulas show how to convert between degrees and semicircles:

degrees = semicircles * (180 / 231)
semicircles = degrees * (231 / 180)

7.3.13 radian_position_type

The radian_position_type is used to indicate latitude and longitude in radians, where π radians equal 180 degrees.
North latitudes and East longitudes are indicated with positive numbers; South latitudes and West longitudes are
indicated with negative numbers.
typedef struct
 {
 float64 lat; /* latitude in radians */
 float64 lon; /* longitude in radians */
 } radian_position_type;

The following formulas show how to convert between degrees and radians:

degrees = radians * (180 / π)
radians = degrees * (π / 180)

7.3.14 time_type

The time_type is used in some data structures to indicate an absolute time. It is an unsigned 32 bit integer and its value
is the number of seconds since 12:00 am December 31, 1989 UTC.

7.3.15 symbol_type

The symbol_type is used in certain devices to indicate the symbol for a waypoint:
typedef uint16 symbol_type;

The enumerated values for symbol_type are shown below. Note that most devices that use this type are limited to a
much smaller subset of these symbols, and no attempt is made in this document to indicate which subsets are valid for
each of these devices. However, the device will ignore any disallowed symbol values that are received and instead
substitute the value for a generic dot symbol. Therefore, there is no harm in attempting to use any value shown in the
table below except that the device may not accept the requested value.

 Page 26 001-00063-00 Rev. C

enum
 {
 /*---
 Marine symbols
 ---*/
 sym_anchor = 0, /* white anchor symbol */
 sym_bell = 1, /* white bell symbol */
 sym_diamond_grn = 2, /* green diamond symbol */
 sym_diamond_red = 3, /* red diamond symbol */
 sym_dive1 = 4, /* diver down flag 1 */
 sym_dive2 = 5, /* diver down flag 2 */
 sym_dollar = 6, /* white dollar symbol */
 sym_fish = 7, /* white fish symbol */
 sym_fuel = 8, /* white fuel symbol */
 sym_horn = 9, /* white horn symbol */
 sym_house = 10, /* white house symbol */
 sym_knife = 11, /* white knife & fork symbol */
 sym_light = 12, /* white light symbol */
 sym_mug = 13, /* white mug symbol */
 sym_skull = 14, /* white skull and crossbones symbol*/
 sym_square_grn = 15, /* green square symbol */
 sym_square_red = 16, /* red square symbol */
 sym_wbuoy = 17, /* white buoy waypoint symbol */
 sym_wpt_dot = 18, /* waypoint dot */
 sym_wreck = 19, /* white wreck symbol */
 sym_null = 20, /* null symbol (transparent) */
 sym_mob = 21, /* man overboard symbol */
 sym_buoy_ambr = 22, /* amber map buoy symbol */
 sym_buoy_blck = 23, /* black map buoy symbol */
 sym_buoy_blue = 24, /* blue map buoy symbol */
 sym_buoy_grn = 25, /* green map buoy symbol */
 sym_buoy_grn_red = 26, /* green/red map buoy symbol */
 sym_buoy_grn_wht = 27, /* green/white map buoy symbol */
 sym_buoy_orng = 28, /* orange map buoy symbol */
 sym_buoy_red = 29, /* red map buoy symbol */
 sym_buoy_red_grn = 30, /* red/green map buoy symbol */
 sym_buoy_red_wht = 31, /* red/white map buoy symbol */
 sym_buoy_violet = 32, /* violet map buoy symbol */
 sym_buoy_wht = 33, /* white map buoy symbol */
 sym_buoy_wht_grn = 34, /* white/green map buoy symbol */
 sym_buoy_wht_red = 35, /* white/red map buoy symbol */
 sym_dot = 36, /* white dot symbol */
 sym_rbcn = 37, /* radio beacon symbol */
 sym_boat_ramp = 150, /* boat ramp symbol */
 sym_camp = 151, /* campground symbol */
 sym_restrooms = 152, /* restrooms symbol */
 sym_showers = 153, /* shower symbol */
 sym_drinking_wtr = 154, /* drinking water symbol */
 sym_phone = 155, /* telephone symbol */
 sym_1st_aid = 156, /* first aid symbol */
 sym_info = 157, /* information symbol */
 sym_parking = 158, /* parking symbol */
 sym_park = 159, /* park symbol */
 sym_picnic = 160, /* picnic symbol */
 sym_scenic = 161, /* scenic area symbol */
 sym_skiing = 162, /* skiing symbol */
 sym_swimming = 163, /* swimming symbol */
 sym_dam = 164, /* dam symbol */
 sym_controlled = 165, /* controlled area symbol */
 sym_danger = 166, /* danger symbol */
 sym_restricted = 167, /* restricted area symbol */
 sym_null_2 = 168, /* null symbol */
 sym_ball = 169, /* ball symbol */

 Page 27 001-00063-00 Rev. C

 sym_car = 170, /* car symbol */
 sym_deer = 171, /* deer symbol */
 sym_shpng_cart = 172, /* shopping cart symbol */
 sym_lodging = 173, /* lodging symbol */
 sym_mine = 174, /* mine symbol */
 sym_trail_head = 175, /* trail head symbol */
 sym_truck_stop = 176, /* truck stop symbol */
 sym_user_exit = 177, /* user exit symbol */
 sym_flag = 178, /* flag symbol */
 sym_circle_x = 179, /* circle with x in the center */
 sym_open_24hr = 180, /* open 24 hours symbol */
 sym_fhs_facility = 181, /* U Fishing Hot Spots™ Facility */
 sym_bot_cond = 182, /* Bottom Conditions */
 sym_tide_pred_stn = 183, /* Tide/Current Prediction Station */
 sym_anchor_prohib = 184, /* U anchor prohibited symbol */
 sym_beacon = 185, /* U beacon symbol */
 sym_coast_guard = 186, /* U coast guard symbol */
 sym_reef = 187, /* U reef symbol */
 sym_weedbed = 188, /* U weedbed symbol */
 sym_dropoff = 189, /* U dropoff symbol */
 sym_dock = 190, /* U dock symbol */
 sym_marina = 191, /* U marina symbol */
 sym_bait_tackle = 192, /* U bait and tackle symbol */
 sym_stump = 193, /* U stump symbol */
 /*---
 User customizable symbols
 The values from sym_begin_custom to sym_end_custom inclusive are
 reserved for the identification of user customizable symbols.
 ---*/
 sym_begin_custom = 7680, /* first user customizable symbol */
 sym_end_custom = 8191, /* last user customizable symbol */
 /*---
 Land symbols
 ---*/
 sym_is_hwy = 8192, /* interstate hwy symbol */
 sym_us_hwy = 8193, /* us hwy symbol */
 sym_st_hwy = 8194, /* state hwy symbol */
 sym_mi_mrkr = 8195, /* mile marker symbol */
 sym_trcbck = 8196, /* TracBack (feet) symbol */
 sym_golf = 8197, /* golf symbol */
 sym_sml_cty = 8198, /* small city symbol */
 sym_med_cty = 8199, /* medium city symbol */
 sym_lrg_cty = 8200, /* large city symbol */
 sym_freeway = 8201, /* intl freeway hwy symbol */
 sym_ntl_hwy = 8202, /* intl national hwy symbol */
 sym_cap_cty = 8203, /* capitol city symbol (star) */
 sym_amuse_pk = 8204, /* amusement park symbol */
 sym_bowling = 8205, /* bowling symbol */
 sym_car_rental = 8206, /* car rental symbol */
 sym_car_repair = 8207, /* car repair symbol */
 sym_fastfood = 8208, /* fast food symbol */
 sym_fitness = 8209, /* fitness symbol */
 sym_movie = 8210, /* movie symbol */
 sym_museum = 8211, /* museum symbol */
 sym_pharmacy = 8212, /* pharmacy symbol */
 sym_pizza = 8213, /* pizza symbol */
 sym_post_ofc = 8214, /* post office symbol */
 sym_rv_park = 8215, /* RV park symbol */
 sym_school = 8216, /* school symbol */
 sym_stadium = 8217, /* stadium symbol */
 sym_store = 8218, /* dept. store symbol */
 sym_zoo = 8219, /* zoo symbol */
 sym_gas_plus = 8220, /* convenience store symbol */

 Page 28 001-00063-00 Rev. C

 sym_faces = 8221, /* live theater symbol */
 sym_ramp_int = 8222, /* ramp intersection symbol */
 sym_st_int = 8223, /* street intersection symbol */
 sym_weigh_sttn = 8226, /* inspection/weigh station symbol */
 sym_toll_booth = 8227, /* toll booth symbol */
 sym_elev_pt = 8228, /* elevation point symbol */
 sym_ex_no_srvc = 8229, /* exit without services symbol */
 sym_geo_place_mm = 8230, /* Geographic place name, man-made */
 sym_geo_place_wtr = 8231, /* Geographic place name, water */
 sym_geo_place_lnd = 8232, /* Geographic place name, land */
 sym_bridge = 8233, /* bridge symbol */
 sym_building = 8234, /* building symbol */
 sym_cemetery = 8235, /* cemetery symbol */
 sym_church = 8236, /* church symbol */
 sym_civil = 8237, /* civil location symbol */
 sym_crossing = 8238, /* crossing symbol */
 sym_hist_town = 8239, /* historical town symbol */
 sym_levee = 8240, /* levee symbol */
 sym_military = 8241, /* military location symbol */
 sym_oil_field = 8242, /* oil field symbol */
 sym_tunnel = 8243, /* tunnel symbol */
 sym_beach = 8244, /* beach symbol */
 sym_forest = 8245, /* forest symbol */
 sym_summit = 8246, /* summit symbol */
 sym_lrg_ramp_int = 8247, /* large ramp intersection symbol */
 sym_lrg_ex_no_srvc = 8248, /* large exit without services smbl */
 sym_badge = 8249, /* police/official badge symbol */
 sym_cards = 8250, /* gambling/casino symbol */
 sym_snowski = 8251, /* snow skiing symbol */
 sym_iceskate = 8252, /* ice skating symbol */
 sym_wrecker = 8253, /* tow truck (wrecker) symbol */
 sym_border = 8254, /* border crossing (port of entry) */
 sym_geocache = 8255, /* geocache location */
 sym_geocache_fnd = 8256, /* found geocache */
 sym_cntct_smiley = 8257, /* Rino contact symbol, "smiley" */
 sym_cntct_ball_cap = 8258, /* Rino contact symbol, "ball cap" */
 sym_cntct_big_ears = 8259, /* Rino contact symbol, "big ear" */
 sym_cntct_spike = 8260, /* Rino contact symbol, "spike" */
 sym_cntct_goatee = 8261, /* Rino contact symbol, "goatee" */
 sym_cntct_afro = 8262, /* Rino contact symbol, "afro" */
 sym_cntct_dreads = 8263, /* Rino contact symbol, "dreads" */
 sym_cntct_female1 = 8264, /* Rino contact symbol, "female 1" */
 sym_cntct_female2 = 8265, /* Rino contact symbol, "female 2" */
 sym_cntct_female3 = 8266, /* Rino contact symbol, "female 3" */
 sym_cntct_ranger = 8267, /* Rino contact symbol, "ranger" */
 sym_cntct_kung_fu = 8268, /* Rino contact symbol, "kung fu" */
 sym_cntct_sumo = 8269, /* Rino contact symbol, "sumo" */
 sym_cntct_pirate = 8270, /* Rino contact symbol, "pirate" */
 sym_cntct_biker = 8271, /* Rino contact symbol, "biker" */
 sym_cntct_alien = 8272, /* Rino contact symbol, "alien" */
 sym_cntct_bug = 8273, /* Rino contact symbol, "bug" */
 sym_cntct_cat = 8274, /* Rino contact symbol, "cat" */
 sym_cntct_dog = 8275, /* Rino contact symbol, "dog" */
 sym_cntct_pig = 8276, /* Rino contact symbol, "pig" */
 sym_hydrant = 8282, /* water hydrant symbol */
 sym_flag_blue = 8284, /* blue flag symbol */
 sym_flag_green = 8285, /* green flag symbol */
 sym_flag_red = 8286, /* red flag symbol */
 sym_pin_blue = 8287, /* blue pin symbol */
 sym_pin_green = 8288, /* green pin symbol */
 sym_pin_red = 8289, /* red pin symbol */
 sym_block_blue = 8290, /* blue block symbol */
 sym_block_green = 8291, /* green block symbol */

 Page 29 001-00063-00 Rev. C

 sym_block_red = 8292, /* red block symbol */
 sym_bike_trail = 8293, /* bike trail symbol */
 sym_circle_red = 8294, /* red circle symbol */
 sym_circle_green = 8295, /* green circle symbol */
 sym_circle_blue = 8296, /* blue circle symbol */
 sym_diamond_blue = 8299, /* blue diamond symbol */
 sym_oval_red = 8300, /* red oval symbol */
 sym_oval_green = 8301, /* green oval symbol */
 sym_oval_blue = 8302, /* blue oval symbol */
 sym_rect_red = 8303, /* red rectangle symbol */
 sym_rect_green = 8304, /* green rectangle symbol */
 sym_rect_blue = 8305, /* blue rectangle symbol */
 sym_square_blue = 8308, /* blue square symbol */
 sym_letter_a_red = 8309, /* red letter 'A' symbol */
 sym_letter_b_red = 8310, /* red letter 'B' symbol */
 sym_letter_c_red = 8311, /* red letter 'C' symbol */
 sym_letter_d_red = 8312, /* red letter 'D' symbol */
 sym_letter_a_green = 8313, /* green letter 'A' symbol */
 sym_letter_c_green = 8314, /* green letter 'C' symbol */
 sym_letter_b_green = 8315, /* green letter 'B' symbol */
 sym_letter_d_green = 8316, /* green letter 'D' symbol */
 sym_letter_a_blue = 8317, /* blue letter 'A' symbol */
 sym_letter_b_blue = 8318, /* blue letter 'B' symbol */
 sym_letter_c_blue = 8319, /* blue letter 'C' symbol */
 sym_letter_d_blue = 8320, /* blue letter 'D' symbol */
 sym_number_0_red = 8321, /* red number '0' symbol */
 sym_number_1_red = 8322, /* red number '1' symbol */
 sym_number_2_red = 8323, /* red number '2' symbol */
 sym_number_3_red = 8324, /* red number '3' symbol */
 sym_number_4_red = 8325, /* red number '4' symbol */
 sym_number_5_red = 8326, /* red number '5' symbol */
 sym_number_6_red = 8327, /* red number '6' symbol */
 sym_number_7_red = 8328, /* red number '7' symbol */
 sym_number_8_red = 8329, /* red number '8' symbol */
 sym_number_9_red = 8330, /* red number '9' symbol */
 sym_number_0_green = 8331, /* green number '0' symbol */
 sym_number_1_green = 8332, /* green number '1' symbol */
 sym_number_2_green = 8333, /* green number '2' symbol */
 sym_number_3_green = 8334, /* green number '3' symbol */
 sym_number_4_green = 8335, /* green number '4' symbol */
 sym_number_5_green = 8336, /* green number '5' symbol */
 sym_number_6_green = 8337, /* green number '6' symbol */
 sym_number_7_green = 8338, /* green number '7' symbol */
 sym_number_8_green = 8339, /* green number '8' symbol */
 sym_number_9_green = 8340, /* green number '9' symbol */
 sym_number_0_blue = 8341, /* blue number '0' symbol */
 sym_number_1_blue = 8342, /* blue number '1' symbol */
 sym_number_2_blue = 8343, /* blue number '2' symbol */
 sym_number_3_blue = 8344, /* blue number '3' symbol */
 sym_number_4_blue = 8345, /* blue number '4' symbol */
 sym_number_5_blue = 8346, /* blue number '5' symbol */
 sym_number_6_blue = 8347, /* blue number '6' symbol */
 sym_number_7_blue = 8348, /* blue number '7' symbol */
 sym_number_8_blue = 8349, /* blue number '8' symbol */
 sym_number_9_blue = 8350, /* blue number '9' symbol */
 sym_triangle_blue = 8351, /* blue triangle symbol */
 sym_triangle_green = 8352, /* green triangle symbol */
 sym_triangle_red = 8353, /* red triangle symbol */
 sym_food_asian = 8359, /* asian food symbol */
 sym_food_deli = 8360, /* deli symbol */
 sym_food_italian = 8361, /* italian food symbol */
 sym_food_seafood = 8362, /* seafood symbol */
 sym_food_steak = 8363, /* steak symbol */

 Page 30 001-00063-00 Rev. C

 /*---
 Aviation symbols
 ---*/
 sym_airport = 16384, /* airport symbol */
 sym_int = 16385, /* intersection symbol */
 sym_ndb = 16386, /* non-directional beacon symbol */
 sym_vor = 16387, /* VHF omni-range symbol */
 sym_heliport = 16388, /* heliport symbol */
 sym_private = 16389, /* private field symbol */
 sym_soft_fld = 16390, /* soft field symbol */
 sym_tall_tower = 16391, /* tall tower symbol */
 sym_short_tower = 16392, /* short tower symbol */
 sym_glider = 16393, /* glider symbol */
 sym_ultralight = 16394, /* ultralight symbol */
 sym_parachute = 16395, /* parachute symbol */
 sym_vortac = 16396, /* VOR/TACAN symbol */
 sym_vordme = 16397, /* VOR-DME symbol */
 sym_faf = 16398, /* first approach fix */
 sym_lom = 16399, /* localizer outer marker */
 sym_map = 16400, /* missed approach point */
 sym_tacan = 16401, /* TACAN symbol */
 sym_seaplane = 16402, /* Seaplane Base */
 };

7.4 Product-Specific Data Types

Note that all positions are referenced to WGS-84. All altitudes are referenced to the WGS-84 geoid.

7.4.1 D100_Wpt_Type
typedef struct
 {
 char ident[6]; /* identifier */
 position_type posn; /* position */
 uint32 unused; /* should be set to zero */
 char cmnt[40]; /* comment */
 } D100_Wpt_Type;

7.4.2 D101_Wpt_Type
typedef struct
 {
 char ident[6]; /* identifier */
 position_type posn; /* position */
 uint32 unused; /* should be set to zero */
 char cmnt[40]; /* comment */
 float32 dst; /* proximity distance (meters) */
 uint8 smbl; /* symbol id */
 } D101_Wpt_Type;

The enumerated values for the “smbl” member of the D101_Wpt_Type are the same as those for symbol_type (see
section 7.3.15 on page 26). However, since the “smbl” member of the D101_Wpt_Type is only 8-bits (instead of 16-
bits), all symbol_type values whose upper byte is non-zero are disallowed in the D101_Wpt_Type.

The “dst” member is valid only during the Proximity Waypoint Transfer Protocol.

 Page 31 001-00063-00 Rev. C

7.4.3 D102_Wpt_Type
typedef struct
 {
 char ident[6]; /* identifier */
 position_type posn; /* position */
 uint32 unused; /* should be set to zero */
 char cmnt[40]; /* comment */
 float32 dst; /* proximity distance (meters) */
 symbol_type smbl; /* symbol id */
 } D102_Wpt_Type;

The “dst” member is valid only during the Proximity Waypoint Transfer Protocol.

7.4.4 D103_Wpt_Type
typedef struct
 {
 char ident[6]; /* identifier */
 position_type posn; /* position */
 uint32 unused; /* should be set to zero */
 char cmnt[40]; /* comment */
 uint8 smbl; /* symbol id */
 uint8 dspl; /* display option */
 } D103_Wpt_Type;

The enumerated values for the “smbl” member of the D103_Wpt_Type are shown below:
enum
 {
 smbl_dot = 0, /* dot symbol */
 smbl_house = 1, /* house symbol */
 smbl_gas = 2, /* gas symbol */
 smbl_car = 3, /* car symbol */
 smbl_fish = 4, /* fish symbol */
 smbl_boat = 5, /* boat symbol */
 smbl_anchor = 6, /* anchor symbol */
 smbl_wreck = 7, /* wreck symbol */
 smbl_exit = 8, /* exit symbol */
 smbl_skull = 9, /* skull symbol */
 smbl_flag = 10, /* flag symbol */
 smbl_camp = 11, /* camp symbol */
 smbl_circle_x = 12, /* circle with x symbol */
 smbl_deer = 13, /* deer symbol */
 smbl_1st_aid = 14, /* first aid symbol */
 smbl_back_track = 15 /* back track symbol */
 };

The enumerated values for the “dspl” member of the D103_Wpt_Type are shown below:
enum
 {
 dspl_name = 0, /* Display symbol with waypoint name */
 dspl_none = 1, /* Display symbol by itself */
 dspl_cmnt = 2 /* Display symbol with comment */
 };

 Page 32 001-00063-00 Rev. C

7.4.5 D104_Wpt_Type
typedef struct
 {
 char ident[6]; /* identifier */
 position_type posn; /* position */
 uint32 unused; /* should be set to zero */
 char cmnt[40]; /* comment */
 float32 dst; /* proximity distance (meters) */
 symbol_type smbl; /* symbol id */
 uint8 dspl; /* display option */
 } D104_Wpt_Type;

The enumerated values for the “dspl” member of the D104_Wpt_Type are shown below:
enum
 {
 dspl_smbl_none = 0, /* Display symbol by itself */
 dspl_smbl_only = 1, /* Display symbol by itself */
 dspl_smbl_name = 3, /* Display symbol with waypoint name */
 dspl_smbl_cmnt = 5, /* Display symbol with comment */
 };

The “dst” member is valid only during the Proximity Waypoint Transfer Protocol.

7.4.6 D105_Wpt_Type
typedef struct
 {
 position_type posn; /* position */
 symbol_type smbl; /* symbol id */
/* char wpt_ident[]; null-terminated string */
 } D105_Wpt_Type;

7.4.7 D106_Wpt_Type
typedef struct
 {
 uint8 wpt_class; /* class */
 uint8 subclass[13]; /* subclass */
 position_type posn; /* position */
 symbol_type smbl; /* symbol id */
/* char wpt_ident[]; null-terminated string */
/* char lnk_ident[]; null-terminated string */
 } D106_Wpt_Type;

The enumerated values for the “wpt_class” member of the D106_Wpt_Type are as follows:

Zero: indicates a user waypoint (“subclass” is ignored).
Non-zero: indicates a non-user waypoint (“subclass” must be valid).

For non-user waypoints (such as a city in the device map database), the device will provide a non-zero value in the
“wpt_class” member, and the “subclass” member will contain valid data to further identify the non-user waypoint. If
the host wishes to transfer this waypoint back to the device (as part of a route), the host must leave the “wpt_class” and
“subclass” members unmodified. For user waypoints, the host must ensure that the “wpt_class” member is zero, but the
“subclass” member will be ignored and should be set to zero.

The “lnk_ident” member provides a string that indicates the name of the path from the previous waypoint in the route
to this one. For example, “HIGHWAY 101” might be placed in “lnk_ident” to show that the path from the previous
waypoint to this waypoint is along Highway 101. The “lnk_ident” string may be empty (i.e., no characters other than
the null terminator), which indicates that no particular path is specified.

 Page 33 001-00063-00 Rev. C

7.4.8 D107_Wpt_Type
typedef struct
 {
 char ident[6]; /* identifier */
 position_type posn; /* position */
 uint32 unused; /* should be set to zero */
 char cmnt[40]; /* comment */
 uint8 smbl; /* symbol id */
 uint8 dspl; /* display option */
 float32 dst; /* proximity distance (meters) */
 uint8 color; /* waypoint color */
 } D107_Wpt_Type;

The enumerated values for the “smbl” member of the D107_Wpt_Type are the same as the “smbl” member of the
D103_Wpt_Type.

The enumerated values for the “dspl” member of the D107_Wpt_Type are the same as the “dspl” member of the
D103_Wpt_Type.

The enumerated values for the “color” member of the D107_Wpt_Type are shown below:
enum
 {
 clr_default = 0, /* Default waypoint color */
 clr_red = 1, /* Red */
 clr_green = 2, /* Green */
 clr_blue = 3 /* Blue */
 };

7.4.9 D108_Wpt_Type
typedef struct
 {
 uint8 wpt_class; /* class (see below) */
 uint8 color; /* color (see below) */
 uint8 dspl; /* display options (see below) */
 uint8 attr; /* attributes (see below) */
 symbol_type smbl; /* waypoint symbol */
 uint8 subclass[18]; /* subclass */
 position_type posn; /* position */
 float32 alt; /* altitude in meters */
 float32 dpth; /* depth in meters */
 float32 dist; /* proximity distance in meters */
 char state[2]; /* state */
 char cc[2]; /* country code */
/* char ident[]; variable length string */
/* char comment[]; waypoint user comment */
/* char facility[]; facility name */
/* char city[]; city name */
/* char addr[]; address number */
/* char cross_road[]; intersecting road label */
 } D108_Wpt_Type;

The enumerated values for the “wpt_class” member of the D108_Wpt_Type are defined as follows:

 Page 34 001-00063-00 Rev. C

enum
 {
 user_wpt = 0x00, /* user waypoint */
 avtn_apt_wpt = 0x40, /* aviation airport waypoint */
 avtn_int_wpt = 0x41, /* aviation intersection waypoint */
 avtn_ndb_wpt = 0x42, /* aviation NDB waypoint */
 avtn_vor_wpt = 0x43, /* aviation VOR waypoint */
 avtn_arwy_wpt = 0x44, /* aviation airport runway waypoint */
 avtn_aint_wpt = 0x45, /* aviation airport intersection */
 avtn_andb_wpt = 0x46, /* aviation airport ndb waypoint */
 map_pnt_wpt = 0x80, /* map point waypoint */
 map_area_wpt = 0x81, /* map area waypoint */
 map_int_wpt = 0x82, /* map intersection waypoint */
 map_adrs_wpt = 0x83, /* map address waypoint */
 map_line_wpt = 0x84, /* map line waypoint */
 };

The “color” member can be one of the following values:
enum
 {
 clr_black = 0,
 clr_dark_red = 1,
 clr_dark_green = 2,
 clr_dark_yellow = 3,
 clr_dark_blue = 4,
 clr_dark_magenta = 5,
 clr_dark_cyan = 6,
 clr_light_gray = 7,
 clr_dark_gray = 8,
 clr_red = 9,
 clr_green = 10,
 clr_yellow = 11,
 clr_blue = 12,
 clr_magenta = 13,
 clr_cyan = 14,
 clr_white = 15,
 clr_default_color = 255
 };

The enumerated values for the “dspl” member of the D108_Wpt_Type are the same as the “dspl” member of the
D103_Wpt_Type.

The “attr” member should be set to a value of 0x60.

 The “subclass” member of the D108_Wpt_Type is used for map waypoints only, and should be set to 0x0000
0x00000000 0xFFFFFFFF 0xFFFFFFFF 0xFFFFFFFF for other classes of waypoints.

The “alt” and “dpth” members may or may not be supported on a given device. A value of 1.0e25 in either of these
fields indicates that this parameter is not supported or is unknown for this waypoint.

The “dist” member is used during the Proximity Waypoint Transfer Protocol only, and should be set to 1.0e25 for other
cases.

The “comment” member of the D108_Wpt_Type is used for user waypoints only, and should be an empty string for
other waypoint classes.

The “facility” and “city” members are used only for aviation waypoints, and should be empty strings for other
waypoint classes.

The “addr” member is only valid for MAP_ADRS_WPT class waypoints and will be an empty string otherwise.

 Page 35 001-00063-00 Rev. C

The “cross_road” member is valid only for MAP_INT_WPT class waypoints, and will be an empty string otherwise.

7.4.10 D109_Wpt_Type
typedef struct
 {
 uint8 dtyp; /* data packet type (0x01 for D109) */
 uint8 wpt_class; /* class */
 uint8 dspl_color; /* display & color (see below) */
 uint8 attr; /* attributes (0x70 for D109) */
 symbol_type smbl; /* waypoint symbol */
 uint8 subclass[18]; /* subclass */
 position_type posn; /* position */
 float32 alt; /* altitude in meters */
 float32 dpth; /* depth in meters */
 float32 dist; /* proximity distance in meters */
 char state[2]; /* state */
 char cc[2]; /* country code */
 uint32 ete; /* outbound link ete in seconds */
/* char ident[]; variable length string */
/* char comment[]; waypoint user comment */
/* char facility[]; facility name */
/* char city[]; city name */
/* char addr[]; address number */
/* char cross_road[]; intersecting road label */
 } D109_Wpt_Type;

All fields are defined the same as D108_Wpt_Type except as noted below.

dtyp - Data packet type, must be 0x01 for D109_Wpt_Type.

dspl_color - The 'dspl_color' member contains three fields; bits 0-4 specify the color, bits 5-6 specify the waypoint
display attribute and bit 7 is unused and must be 0. Color values are as specified for D108_Wpt_Type except that the
default value is 0x1f. Display attribute values are as specified for D108_Wpt_Type.

attr - Attribute. Must be 0x70 for D109_Wpt_Type.

ete - Estimated time en route in seconds to next waypoint. Default value is 0xFFFFFFFF.

 Page 36 001-00063-00 Rev. C

7.4.11 D110_Wpt_Type
typedef struct
 {
 uint8 dtyp; /* data packet type (0x01 for D110) */
 uint8 wpt_class; /* class */
 uint8 dspl_color; /* display & color (see below) */
 uint8 attr; /* attributes (0x80 for D110) */
 symbol_type smbl; /* waypoint symbol */
 uint8 subclass[18]; /* subclass */
 position_type posn; /* position */
 float32 alt; /* altitude in meters */
 float32 dpth; /* depth in meters */
 float32 dist; /* proximity distance in meters */
 char state[2]; /* state */
 char cc[2]; /* country code */
 uint32 ete; /* outbound link ete in seconds */
 float32 temp; /* temperature */
 time_type time; /* timestamp */
 uint16 wpt_cat; /* category membership */
/* char ident[]; variable length string */
/* char comment[]; waypoint user comment */
/* char facility[]; facility name */
/* char city[]; city name */
/* char addr[]; address number */
/* char cross_road[]; intersecting road label */
 } D110_Wpt_Type;

All fields are defined the same as D109_Wpt_Type except as noted below.

The valid values for the "wpt_class" member of the D110_Wpt_Type are defined as follows. If an invalid value is
received, the value shall be user_wpt.
enum
 {
 user_wpt = 0x00, /* user waypoint */
 avtn_apt_wpt = 0x40, /* aviation airport waypoint */
 avtn_int_wpt = 0x41, /* aviation intersection waypoint */
 avtn_ndb_wpt = 0x42, /* aviation NDB waypoint */
 avtn_vor_wpt = 0x43, /* aviation VOR waypoint */
 avtn_arwy_wpt = 0x44, /* aviation airport runway waypoint */
 avtn_aint_wpt = 0x45, /* aviation airport intersection */
 avtn_andb_wpt = 0x46, /* aviation airport ndb waypoint */
 map_pnt_wpt = 0x80, /* map point waypoint */
 map_area_wpt = 0x81, /* map area waypoint */
 map_int_wpt = 0x82, /* map intersection waypoint */
 map_adrs_wpt = 0x83, /* map address waypoint */
 map_line_wpt = 0x84, /* map line waypoint */
 };

wpt_cat - Waypoint Category. May not be supported by all devices. Default value is 0x0000. This is a bit field that
provides category membership information for the waypoint. The waypoint may be a member of up to 16 categories. If
a bit is set then the waypoint is a member of the corresponding category. For example, if bits 0 and 4 are set then the
waypoint is a member of categories 1 and 5. For more information see section 6.5 on page 13.

temp - Temperature. May not be supported by all devices. A value of 1.0e25 in this field indicates that this parameter is
not supported or is unknown for this waypoint.

time - Time. May not be supported by all devices. A value of 0xFFFFFFFF in this field indicates that this parameter is
not supported or is unknown for this waypoint.

attr - Attribute. Must be 0x80 for D110_Wpt_Type.

 Page 37 001-00063-00 Rev. C

dspl_color - The 'dspl_color' member contains three fields; bits 0-4 specify the color, bits 5-6 specify the waypoint
display attribute and bit 7 is unused and must be 0. Valid color values are specified below. If an invalid color value is
received, the value shall be Black. Valid display attribute values are as shown below. If an invalid display attribute
value is received, the value shall be Name.
enum
 {
 clr_Black = 0,
 clr_Dark_Red = 1,
 clr_Dark_Green = 2,
 clr_Dark_Yellow = 3,
 clr_Dark_Blue = 4,
 clr_Dark_Magenta = 5,
 clr_Dark_Cyan = 6,
 clr_Light_Gray = 7,
 clr_Dark_Gray = 8,
 clr_Red = 9,
 clr_Green = 10,
 clr_Yellow = 11,
 clr_Blue = 12,
 clr_Magenta = 13,
 clr_Cyan = 14,
 clr_White = 15,
 clr_Transparent = 16
 };

enum
 {
 dspl_Smbl_Name = 0, /* Display symbol with waypoint name */
 dspl_Smbl_Only = 1, /* Display symbol by itself */
 dspl_Smbl_Comment = 2 /* Display symbol with comment */
 };

posn - Position. If a D110 waypoint is received that contains a value in the lat field of the posn field that is greater than
2^30 or less than -2^30, then that waypoint shall be rejected.

7.4.12 D120_Wpt_Cat_Type
typedef struct
 {
 char name[17]; /* category name */
 } D120_Wpt_Cat_Type;

The name field contains a null-terminated string with a maximum length of 16 consecutive non-null characters. If a
D120 waypoint category is received that contains a string with more than 16 consecutive non-null characters then that
name should be truncated to the first 16 characters and then null terminated. If a D120 waypoint category is received
with a null in the first character of the name field then that packet should not be processed.

7.4.13 D150_Wpt_Type
typedef struct
 {
 char ident[6]; /* identifier */
 char cc[2]; /* country code */
 uint8 wpt_class; /* class */
 position_type posn; /* position */
 sint16 alt; /* altitude (meters) */
 char city[24]; /* city */
 char state[2]; /* state */
 char name[30]; /* facility name */
 char cmnt[40]; /* comment */
 } D150_Wpt_Type;

 Page 38 001-00063-00 Rev. C

The enumerated values for the “wpt_class” member of the D150_Wpt_Type are shown below:
enum
 {
 apt_wpt_class = 0, /* airport waypoint class */
 int_wpt_class = 1, /* intersection waypoint class */
 ndb_wpt_class = 2, /* NDB waypoint class */
 vor_wpt_class = 3, /* VOR waypoint class */
 usr_wpt_class = 4, /* user defined waypoint class */
 rwy_wpt_class = 5, /* airport runway threshold waypoint class */
 aint_wpt_class = 6, /* airport intersection waypoint class */
 locked_wpt_class = 7 /* locked waypoint class */
 };

The “locked_wpt_class” code indicates that a route within a device contains an aviation database waypoint that the
device could not find in its aviation database (presumably because the aviation database was updated to a newer
version). The host should never send the “locked_wpt_class” code to the device.

The “city,” “state,” “name,” and “cc” members are invalid when the “wpt_class” member is equal to usr_wpt_class.
The “alt” member is valid only when the “wpt_class” member is equal to apt_wpt_class.

7.4.14 D151_Wpt_Type
typedef struct
 {
 char ident[6]; /* identifier */
 position_type posn; /* position */
 uint32 unused; /* should be set to zero */
 char cmnt[40]; /* comment */
 float32 dst; /* proximity distance (meters) */
 char name[30]; /* facility name */
 char city[24]; /* city */
 char state[2]; /* state */
 sint16 alt; /* altitude (meters) */
 char cc[2]; /* country code */
 char unused2; /* should be set to zero */
 uint8 wpt_class; /* class */
 } D151_Wpt_Type;

The enumerated values for the “wpt_class” member of the D151_Wpt_Type are shown below:
enum
 {
 apt_wpt_class = 0, /* airport waypoint class */
 vor_wpt_class = 1, /* VOR waypoint class */
 usr_wpt_class = 2, /* user defined waypoint class */
 locked_wpt_class = 3 /* locked waypoint class */
 };

The “locked_wpt_class” code indicates that a route within a device contains an aviation database waypoint that the
device could not find in its aviation database (presumably because the aviation database was updated to a newer
version). The host should never send the “locked_wpt_class” code to the device.

The “dst” member is valid only during the Proximity Waypoint Transfer Protocol.

The “city,” “state,” “name,” and “cc” members are invalid when the “wpt_class” member is equal to usr_wpt_class.
The “alt” member is valid only when the “wpt_class” member is equal to apt_wpt_class.

 Page 39 001-00063-00 Rev. C

7.4.15 D152_Wpt_Type
typedef struct
 {
 char ident[6]; /* identifier */
 position_type posn; /* position */
 uint32 unused; /* should be set to zero */
 char cmnt[40]; /* comment */
 float32 dst; /* proximity distance (meters) */
 char name[30]; /* facility name */
 char city[24]; /* city */
 char state[2]; /* state */
 sint16 alt; /* altitude (meters) */
 char cc[2]; /* country code */
 uint8 unused2; /* should be set to zero */
 uint8 wpt_class; /* class */
 } D152_Wpt_Type;

The enumerated values for the “wpt_class” member of the D152_Wpt_Type are shown below:
enum
 {
 apt_wpt_class = 0, /* airport waypoint class */
 int_wpt_class = 1, /* intersection waypoint class */
 ndb_wpt_class = 2, /* NDB waypoint class */
 vor_wpt_class = 3, /* VOR waypoint class */
 usr_wpt_class = 4, /* user defined waypoint class */
 locked_wpt_class = 5 /* locked waypoint class */
 };

The “locked_wpt_class” code indicates that a route within a device contains an aviation database waypoint that the
device could not find in its aviation database (presumably because the aviation database was updated to a newer
version). The host should never send the “locked_wpt_class” code to the device.

The “dst” member is valid only during the Proximity Waypoint Transfer Protocol.

The “city,” “state,” “name,” and “cc” members are invalid when the “wpt_class” member is equal to usr_wpt_class.
The “alt” member is valid only when the “wpt_class” member is equal to apt_wpt_class.

7.4.16 D154_Wpt_Type
typedef struct
 {
 char ident[6]; /* identifier */
 position_type posn; /* position */
 uint32 unused; /* should be set to zero */
 char cmnt[40]; /* comment */
 float32 dst; /* proximity distance (meters) */
 char name[30]; /* facility name */
 char city[24]; /* city */
 char state[2]; /* state */
 sint16 alt; /* altitude (meters) */
 char cc[2]; /* country code */
 uint8 unused2; /* should be set to zero */
 uint8 wpt_class; /* class */
 symbol_type smbl; /* symbol id */
 } D154_Wpt_Type;

The enumerated values for the “wpt_class” member of the D154_Wpt_Type are shown below:

 Page 40 001-00063-00 Rev. C

enum
 {
 apt_wpt_class = 0, /* airport waypoint class */
 int_wpt_class = 1, /* intersection waypoint class */
 ndb_wpt_class = 2, /* NDB waypoint class */
 vor_wpt_class = 3, /* VOR waypoint class */
 usr_wpt_class = 4, /* user defined waypoint class */
 rwy_wpt_class = 5, /* airport runway threshold waypoint class */
 aint_wpt_class = 6, /* airport intersection waypoint class */
 andb_wpt_class = 7, /* airport NDB waypoint class */
 sym_wpt_class = 8, /* user defined symbol-only waypoint class */
 locked_wpt_class = 9 /* locked waypoint class */
 };

The “locked_wpt_class” code indicates that a route within a device contains an aviation database waypoint that the
device could not find in its aviation database (presumably because the aviation database was updated to a newer
version). The host should never send the “locked_wpt_class” code to the device.

The “dst” member is valid only during the Proximity Waypoint Transfer Protocol.

The “city,” “state,” “name,” and “cc” members are invalid when the “wpt_class” member is equal to usr_wpt_class or
sym_wpt_class. The “alt” member is valid only when the “wpt_class” member is equal to apt_wpt_class.

7.4.17 D155_Wpt_Type
typedef struct
 {
 char ident[6]; /* identifier */
 position_type posn; /* position */
 uint32 unused; /* should be set to zero */
 char cmnt[40]; /* comment */
 float32 dst; /* proximity distance (meters) */
 char name[30]; /* facility name */
 char city[24]; /* city */
 char state[2]; /* state */
 sint16 alt; /* altitude (meters) */
 char cc[2]; /* country code */
 uint8 unused2; /* should be set to zero */
 uint8 wpt_class; /* class */
 symbol_type smbl; /* symbol id */
 uint8 dspl; /* display option */
 } D155_Wpt_Type;

The enumerated values for the “dspl” member of the D155_Wpt_Type are shown below:
enum
 {
 dspl_smbl_only = 1, /* Display symbol by itself */
 dspl_smbl_name = 3, /* Display symbol with waypoint name */
 dspl_smbl_cmnt = 5, /* Display symbol with comment */
 };

The enumerated values for the “wpt_class” member of the D155_Wpt_Type are shown below:
enum
 {
 apt_wpt_class = 0, /* airport waypoint class */
 int_wpt_class = 1, /* intersection waypoint class */
 ndb_wpt_class = 2, /* NDB waypoint class */
 vor_wpt_class = 3, /* VOR waypoint class */
 usr_wpt_class = 4, /* user defined waypoint class */
 locked_wpt_class = 5 /* locked waypoint class */
 };

 Page 41 001-00063-00 Rev. C

The “locked_wpt_class” code indicates that a route within a device contains an aviation database waypoint that the
device could not find in its aviation database (presumably because the aviation database was updated to a newer
version). The host should never send the “locked_wpt_class” code to the device.

The “dst” member is valid only during the Proximity Waypoint Transfer Protocol.

The “city,” “state,” “name,” and “cc” members are invalid when the “wpt_class” member is equal to usr_wpt_class.
The “alt” member is valid only when the “wpt_class” member is equal to apt_wpt_class.

7.4.18 D200_Rte_Hdr_Type
typedef uint8 D200_Rte_Hdr_Type; /* route number */

The route number contained in the D200_Rte_Hdr_Type must be unique for each route.

7.4.19 D201_Rte_Hdr_Type
typedef struct
 {
 uint8 nmbr; /* route number */
 char cmnt[20]; /* comment */
 } D201_Rte_Hdr_Type;

The “nmbr” member must be unique for each route. Some devices require a unique “cmnt” for each route, and other
devices do not. There is no mechanism available for the host to determine whether a device requires a unique “cmnt”,
and the host must be prepared to receive unique or non-unique “cmnt” from the device.

7.4.20 D202_Rte_Hdr_Type
typedef struct
 {
/* char rte_ident[]; variable length string */
 } D202_Rte_Hdr_Type;

7.4.21 D210_Rte_Link_Type
typedef struct
 {
 uint16 class; /* link class; see below */
 uint8 subclass[18]; /* subclass */
/* char ident[]; variable length string */
 };

The “class” member can be one of the following values:
enum
 {
 line = 0,
 link = 1,
 net = 2,
 direct = 3,
 snap = 0xFF
 };

The “ident” member has a maximum length of 51 characters, including the terminating NULL.

If “class” is set to “direct” or “snap”, subclass should be set to its default value of 0x0000 0x00000000 0xFFFFFFFF
0xFFFFFFFF 0xFFFFFFFF.

 Page 42 001-00063-00 Rev. C

7.4.22 D300_Trk_Point_Type
typedef struct
 {
 position_type posn; /* position */
 time_type time; /* time */
 bool new_trk; /* new track segment? */
 } D300_Trk_Point_Type;

The “time” member indicates the time at which the track log point was recorded.

When true, the “new_trk” member indicates that the track log point marks the beginning of a new track log segment.

7.4.23 D301_Trk_Point_Type
typedef struct
 {
 position_type posn; /* position */
 time_type time; /* time */
 float32 alt; /* altitude in meters */
 float32 dpth; /* depth in meters */
 bool new_trk; /* new track segment? */
 } D301_Trk_Point_Type;

The “time” member indicates the time at which the track log point was recorded.

The ‘alt’ and ‘dpth’ members may or may not be supported on a given device. A value of 1.0e25 in either of these
fields indicates that this parameter is not supported or is unknown for this track point.

When true, the “new_trk” member indicates that the track log point marks the beginning of a new track log segment.

7.4.24 D302_Trk_Point_Type
typedef struct
 {
 position_type posn; /* position */
 time_type time; /* time */
 float32 alt; /* altitude in meters */
 float32 dpth; /* depth in meters */
 float32 temp; /* temp in degrees C */
 bool new_trk; /* new track segment? */
 } D302_Trk_Point_Type;

All fields are defined the same as D301_Trk_Point_Type except as noted below.

temp - Temperature. May not be supported by all devices. A value of 1.0e25 in this field indicates that this parameter is
not supported or is unknown for this track point.

7.4.25 D303_Trk_Point_Type
typedef struct
 {
 position_type posn; /* position */
 time_type time; /* time */
 float32 alt; /* altitude in meters */
 uint8 heart_rate; /* heart rate in beats per minute */
 } D303_Trk_Point_Type;

All fields are defined the same as D301_Trk_Point_Type except as noted below.

The “posn” member is invalid if both lat and lon are equal to 0x7FFFFFFF.

The “heart_rate” member is invalid if its value is equal to 0.

 Page 43 001-00063-00 Rev. C

Two consecutive track points with invalid position, invalid altitude, and invalid heart rate indicate a pause in track
point recording during the time between the two points.

7.4.26 D304_Trk_Point_Type
typedef struct
 {
 position_type posn; /* position */
 time_type time; /* time */
 float32 alt; /* altitude in meters */
 float32 distance; /* distance traveled in meters. See below. */
 uint8 heart_rate; /* heart rate in beats per minute */
 uint8 cadence; /* in revolutions per minute */
 bool sensor; /* is a wheel sensor present? */
 } D304_Trk_Point_Type;

All fields are defined the same as D303_Track_Point_Type except as noted below.

The “distance” member is the cumulative distance traveled in the track up to this point in meters as determined by the
wheel sensor or from the position, whichever is more accurate. If the distance cannot be obtained, the “distance”
member has a value of 1.0e25, indicating that it is invalid.

A value of 0xFF for the “cadence” member indicates that it is invalid.

Two consecutive track points with invalid position, invalid altitude, invalid heart rate, invalid distance and invalid
cadence indicate a pause in track point recording during the time between the two points.

7.4.27 D310_Trk_Hdr_Type
typedef struct
 {
 bool dspl; /* display on the map? */
 uint8 color; /* color (same as D108) */
/* char trk_ident[]; null-terminated string */
 } D310_Trk_Hdr_Type;

The ‘trk_ident’ member has a maximum length of 51 characters including the terminating NULL.

7.4.28 D311_Trk_Hdr_Type
typedef struct
 {
 uint16 index; /* unique among all tracks received from device
*/
 } D311_Trk_Hdr_Type;

7.4.29 D312_Trk_Hdr_Type
typedef struct
 {
 bool dspl; /* display on the map? */
 uint8 color; /* color (see below) */
/* char trk_ident[]; null-terminated string */
 } D312_Trk_Hdr_Type;

The 'trk_ident' member has a maximum length of 51 characters including the terminating NULL.

The “color” member can be one of the following values:

 Page 44 001-00063-00 Rev. C

enum
 {
 clr_Black = 0,
 clr_Dark_Red = 1,
 clr_Dark_Green = 2,
 clr_Dark_Yellow = 3,
 clr_Dark_Blue = 4,
 clr_Dark_Magenta = 5,
 clr_Dark_Cyan = 6,
 clr_Light_Gray = 7,
 clr_Dark_Gray = 8,
 clr_Red = 9,
 clr_Green = 10,
 clr_Yellow = 11,
 clr_Blue = 12,
 clr_Magenta = 13,
 clr_Cyan = 14,
 clr_White = 15,
 clr_Transparent = 16,
 clr_DefaultColor = 255
 };

7.4.30 D400_Prx_Wpt_Type
typedef struct
 {
 D100_Wpt_Type wpt; /* waypoint */
 float32 dst; /* proximity distance (meters) */
 } D400_Prx_Wpt_Type;

The “dst” member is valid only during the Proximity Waypoint Transfer Protocol.

7.4.31 D403_Prx_Wpt_Type
typedef struct
 {
 D103_Wpt_Type wpt; /* waypoint */
 float32 dst; /* proximity distance (meters) */
 } D403_Prx_Wpt_Type;

The “dst” member is valid only during the Proximity Waypoint Transfer Protocol.

7.4.32 D450_Prx_Wpt_Type
typedef struct
 {
 int idx; /* proximity index */
 D150_Wpt_Type wpt; /* waypoint */
 float32 dst; /* proximity distance (meters) */
 } D450_Prx_Wpt_Type;

The “dst” member is valid only during the Proximity Waypoint Transfer Protocol.

 Page 45 001-00063-00 Rev. C

7.4.33 D500_Almanac_Type
typedef struct
 {
 uint16 wn; /* week number (weeks) */
 float32 toa; /* almanac data reference time (s) */
 float32 af0; /* clock correction coefficient (s) */
 float32 af1; /* clock correction coefficient (s/s) */
 float32 e; /* eccentricity (-) */
 float32 sqrta; /* square root of semi-major axis (a)(m**1/2) */
 float32 m0; /* mean anomaly at reference time (r) */
 float32 w; /* argument of perigee (r) */
 float32 omg0; /* right ascension (r) */
 float32 odot; /* rate of right ascension (r/s) */
 float32 i; /* inclination angle (r) */
 } D500_Almanac_Type;

7.4.34 D501_Almanac_Type
typedef struct
 {
 uint16 wn; /* week number (weeks) */
 float32 toa; /* almanac data reference time (s) */
 float32 af0; /* clock correction coefficient (s) */
 float32 af1; /* clock correction coefficient (s/s) */
 float32 e; /* eccentricity (-) */
 float32 sqrta; /* square root of semi-major axis (a)(m**1/2) */
 float32 m0; /* mean anomaly at reference time (r) */
 float32 w; /* argument of perigee (r) */
 float32 omg0; /* right ascension (r) */
 float32 odot; /* rate of right ascension (r/s) */
 float32 i; /* inclination angle (r) */
 uint8 hlth; /* almanac health */
 } D501_Almanac_Type;

7.4.35 D550_Almanac_Type
typedef struct
 {
 uint8 svid; /* satellite id */
 uint16 wn; /* week number (weeks) */
 float32 toa; /* almanac data reference time (s) */
 float32 af0; /* clock correction coefficient (s) */
 float32 af1; /* clock correction coefficient (s/s) */
 float32 e; /* eccentricity (-) */
 float32 sqrta; /* square root of semi-major axis (a)(m**1/2) */
 float32 m0; /* mean anomaly at reference time (r) */
 float32 w; /* argument of perigee (r) */
 float32 omg0; /* right ascension (r) */
 float32 odot; /* rate of right ascension (r/s) */
 float32 i; /* inclination angle (r) */
 } D550_Almanac_Type;

The “svid” member identifies a satellite in the GPS constellation as follows: PRN-01 through PRN-32 are indicated by
“svid” equal to 0 through 31, respectively.

 Page 46 001-00063-00 Rev. C

7.4.36 D551_Almanac_Type
typedef struct
 {
 uint8 svid; /* satellite id */
 uint16 wn; /* week number (weeks) */
 float32 toa; /* almanac data reference time (s) */
 float32 af0; /* clock correction coefficient (s) */
 float32 af1; /* clock correction coefficient (s/s) */
 float32 e; /* eccentricity (-) */
 float32 sqrta; /* square root of semi-major axis (a)(m**1/2) */
 float32 m0; /* mean anomaly at reference time (r) */
 float32 w; /* argument of perigee (r) */
 float32 omg0; /* right ascension (r) */
 float32 odot; /* rate of right ascension (r/s) */
 float32 i; /* inclination angle (r) */
 uint8 hlth; /* almanac health bits 17:24 (coded) */
 } D551_Almanac_Type;

The “svid” member identifies a satellite in the GPS constellation as follows: PRN-01 through PRN-32 are indicated by
“svid” equal to 0 through 31, respectively.

7.4.37 D600_Date_Time_Type
typedef struct
 {
 uint8 month; /* month (1-12) */
 uint8 day; /* day (1-31) */
 uint16 year; /* year (1990 means 1990) */
 uint16 hour; /* hour (0-23) */
 uint8 minute; /* minute (0-59) */
 uint8 second; /* second (0-59) */
 } D600_Date_Time_Type;

The D600_Date_Time_Type contains the UTC date and UTC time.

7.4.38 D650_FlightBook_Record_Type
typedef struct
 {
 time_type takeoff_time; /* Time flight started */
 time_type landing_time; /* Time flight ended */
 position_type takeoff_posn; /* Takeoff lat/lon */
 position_type landing_posn; /* Takeoff lat/lon */
 uint32 night_time; /* Seconds flown in night time conditions */
 uint32 num_landings; /* Number of landings during the flight */
 float32 max_speed; /* Max velocity during flight (meters/sec) */
 float32 max_alt; /* Max altitude above WGS84 ellipsoid (meters)*/
 float32 distance; /* Distance of flight (meters) */
 bool cross_country_flag; /* Flight met cross country criteria */
/* char departure_name[]; Name of airport <= 31 bytes */
/* char departure_ident[]; ID of airport <= 11 bytes */
/* char arrival_name[]; Name of airport <= 31 bytes */
/* char arrival_ident[];ID of airport <= 11 bytes */
/* char ac_id[]; N Number of airplane <= 11 bytes */
 } D650_Flight_Book_Record_Type;

7.4.39 D700_Position_Type
typedef radian_position_type D700_Position_Type;

 Page 47 001-00063-00 Rev. C

7.4.40 D800_Pvt_Data_Type
typedef struct
 {
 float32 alt; /* altitude above WGS 84 ellipsoid (meters) */
 float32 epe; /* estimated position error, 2 sigma (meters) */
 float32 eph; /* epe, but horizontal only (meters) */
 float32 epv; /* epe, but vertical only (meters) */
 uint16 fix; /* type of position fix */
 float64 tow; /* time of week (seconds) */
 radian_position_type posn; /* latitude and longitude (radians) */
 float32 east; /* velocity east (meters/second) */
 float32 north; /* velocity north (meters/second) */
 float32 up; /* velocity up (meters/second) */
 float32 msl_hght; /* height of WGS84 ellipsoid above MSL(meters)*/
 sint16 leap_scnds; /* difference between GPS and UTC (seconds) */
 uint32 wn_days; /* week number days */
 } D800_Pvt_Data_Type;

The “alt” parameter provides the altitude above the WGS 84 ellipsoid. To find the altitude above mean sea level, add
“msl_hght” to “alt” (“msl_hght” gives the height of the WGS 84 ellipsoid above mean sea level at the current position).

The “tow” parameter provides the number of seconds (excluding leap seconds) since the beginning of the current week,
which begins on Sunday at 12:00 AM (i.e., midnight Saturday night-Sunday morning). The “tow” parameter is based
on Universal Coordinated Time (UTC), except UTC is periodically corrected for leap seconds while “tow” is not
corrected for leap seconds. To find UTC, subtract “leap_scnds” from “tow.” Since this may cause a negative result for
the first few seconds of the week (i.e., when “tow” is less than “leap_scnds”), care must be taken to properly translate
this negative result to a positive time value in the previous day. Also, since “tow” is a floating point number and may
contain fractional seconds, care must be taken to properly round off when using “tow” in integer conversions and
calculations.

The “wn_days” parameter provides the number of days that have occurred from UTC December 31st, 1989 to the
beginning of the current week (thus, “wn_days” always represents a Sunday). To find the total number of days that
have occurred from UTC December 31st, 1989 to the current day, add “wn_days” to the number of days that have
occurred in the current week (as calculated from the “tow” parameter).

The default enumerated values for the “fix” member of the D800_Pvt_Data_Type are shown below. It is important for
the host to inspect this value to ensure that other data members in the D800_Pvt_Data_Type are valid. No indication is
given as to whether the device is in simulator mode versus having an actual position fix.
enum
 {
 unusable = 0, /* failed integrity check */
 invalid = 1, /* invalid or unavailable */
 2D = 2, /* two dimensional */
 3D = 3, /* three dimensional */
 2D_diff = 4, /* two dimensional differential */
 3D_diff = 5 /* three dimensional differential */
 };

 Page 48 001-00063-00 Rev. C

Older software versions in certain devices use slightly different enumerated values for fix. The list of devices and the
last version of software in which these different values are used is:

Device Last SW Version
eMap 2.64
GPSMAP 162 2.62
GPSMAP 295 2.19
eTrex 2.10
eTrex Summit 2.07
StreetPilot III 2.10
eTrex Japanese 2.10
eTrex Venture/Mariner 2.20
eTrex Europe 2.03
GPS 152 2.01
eTrex Chinese 2.01
eTrex Vista 2.12
eTrex Summit Japanese 2.01
eTrex Summit 2.24
eTrex GolfLogix 2.49

The enumerated values for these device software versions is one more than the default:
enum
 {
 unusable = 1, /* failed integrity check */
 invalid = 2, /* invalid or unavailable */
 2D = 3, /* two dimensional */
 3D = 4, /* three dimensional */
 2D_diff = 5, /* two dimensional differential */
 3D_diff = 6 /* three dimensional differential */
 };

7.4.41 D906_Lap_Type
typedef struct
 {
 time_type start_time;
 uint32 total_time; /* In hundredths of a second */
 float32 total_distance; /* In meters */
 position_type begin; /* Invalid if both lat and lon are 0x7FFFFFFF */
 position_type end; /* Invalid if both lat and lon are 0x7FFFFFFF */
 uint16 calories;
 uint8 track_index; /* See below */
 uint8 unused; /* Unused. Set to 0. */
 } D906_Lap_Type;

Possible values for the track_index member are as follows:

Value Meaning
0 - 252 The lap is the last in its run. The track index is valid and can be used to lookup the track and

associate it with the run.
253 - 254 The lap is the last in its run; however, the run has no associated track.
255 The lap is not the last in its run. Or, if this is the last lap received, then it must be the last lap

in its run. In this case, the track for the run is any track not already associated with a run.

 6.7.4Use the A302 Track Transfer Protocol to receive the tracks associated with these laps (see section on page 16).

 Page 49 001-00063-00 Rev. C

7.4.42 D1000_Run_Type
typedef struct
 {
 uint32 track_index; /* Index of associated track */
 uint32 first_lap_index; /* Index of first associated lap */
 uint32 last_lap_index; /* Index of last associated lap */
 uint8 sport_type; /* See below */
 uint8 program_type; /* See below */
 uint16 unused; /* Unused. Set to 0. */
 struct
 {
 uint32 time; /* Time result of virtual partner */
 float32 distance; /* Distance result of virtual partner */
 } virtual_partner;
 D1002_Workout_Type workout; /* Workout */
 } D1000_Run_Type

The value of the “track_index” member must be 0xFFFFFFFF if there is no associated track.

All laps between “first_lap_index” and “last_lap_index” are also contained in the run.

The “sport_type” member can be one of the following values:
enum
 {
 running = 0,
 biking = 1,
 other = 2
 };

The “program_type” member can be one of the following values:
enum
 {
 none = 0,
 virtual_partner = 1, /* Completed with Virtual Partner */
 workout = 2 /* Completed as part of a workout */
 };

The values in the “virtual_partner” struct is considered valid only if “program_type” is equal to “virtual_partner”.

The value of the “workout” member is considered valid only if “program_type” is equal to “workout”.

7.4.43 D1001_Lap_Type
typedef struct
 {
 uint32 index; /* Unique among all laps received from device */
 time_type start_time; /* Start of lap time */
 uint32 total_time; /* Duration of lap, in hundredths of a second */
 float32 total_dist; /* Distance in meters */
 float32 max_speed; /* In meters per second */
 position_type begin; /* Invalid if both lat and lon are 0x7FFFFFFF */
 position_type end; /* Invalid if both lat and lon are 0x7FFFFFFF */
 uint16 calories; /* Calories burned this lap */
 uint8 avg_heart_rate; /* In beats-per-minute, 0 if invalid */
 uint8 max_heart_rate; /* In beats-per-minute, 0 if invalid */
 uint8 intensity; /* See below */
 } D1001_Lap_Type;

The “intensity” member can be one of the following values:

 Page 50 001-00063-00 Rev. C

enum
 {
 active = 0, /* This is a standard, active lap */
 rest = 1 /* This is a rest lap in a workout */
 };

7.4.44 D1002_Workout_Type
typedef struct
 {
 uint32 num_valid_steps; /* Number of valid steps (1-20) */
 struct
 {
 char custom_name[16]; /* Null-terminated step name */
 float32 target_custom_zone_low; /* See below */
 float32 target_custom_zone_high; /* See below */
 uint16 duration_value; /* See below */
 uint8 intensity; /* Same as D1001 */
 uint8 duration_type; /* See below */
 uint8 target_type; /* See below */
 uint8 target_value; /* See below */
 uint16 unused; /* Unused. Set to 0. */
 } steps[20];
 char name[16]; /* Null-terminated workout name */
 uint8 sport_type; /* Same as D1000 */
 } D1002_Workout_Type;

All valid steps appear in order at the beginning of the “steps” array.

 Page 51 001-00063-00 Rev. C

The values of “duration_type” and “duration_value” in the “steps” struct are defined as follows:

Table 33 – D1002 Workout Step Duration

duration_type duration_value
0 = Time In seconds
1 = Distance In meters
2 = Heart Rate Less
Than

A value from 0 – 100 indicates a percentage of max heart rate. A value above 100 indicates
beats-per-minute (255 max) plus 100.

3 = Heart Rate
Greater Than

A value from 0 – 100 indicates a percentage of max heart rate. A value above 100 indicates
beats-per-minute (255 max) plus 100.

4 = Calories Burned In calories
5 = Open Undefined
6 = Repeat Number of the step to loop back to. Steps are assumed to be in the order in which they are

received, and are numbered starting at one. The “custom_name” and “intensity” members are
undefined for this duration type.

The values of “target_type”, “target_value”, “target_custom_zone_low”, and “target_custom_zone_high” in the “steps”
struct are defined as follows:

Table 34 – D1002 Workout Step Targets

target_type target_value target_custom_zone_low target_custom_zone_high
0 = Speed Speed zone (1 –

10). A value of 0
indicates a custom
zone.

Speed in meters per second.
Undefined if not a custom zone.

Speed in meters per second.
Undefined for a non-custom zone.

1 = Heart Rate Heart rate zone (1
– 5). A value of 0
indicates a custom
zone.

A value of 0 – 100 indicated the
percentage of max heart rate. A value
above 100 indicates beats-per-minute
(max of 255) plus 100.
Undefined if not a custom zone.

A value of 0 – 100 indicated the
percentage of max heart rate. A value
above 100 indicates beats-per-minute
(max of 255) plus 100.
Undefined if not a custom zone.

2 = Open Undefined Undefined Undefined
Any value if
the duration
type is
“Repeat”

Number of
repetitions

Undefined Undefined

7.4.45 D1003_Workout_Occurrence_Type
typedef struct
 {
 char workout_name[16]; /* Null-terminated workout name */
 time_type day; /* Day on which the workout falls */
 } D1003_Workout_Occurrence_Type;

The “workout_name” field associates this workout occurrence with a particular workout.

 Page 52 001-00063-00 Rev. C

7.4.46 D1004_Fitness_User_Profile_Type
typedef struct
 {
 struct
 {
 struct
 {
 uint8 low_heart_rate; /* In beats-per-minute, must be > 0 */
 uint8 high_heart_rate; /* In beats-per-minute, must be > 0 */
 uint16 unused; /* Unused. Set to 0. */
 } heart_rate_zones[5];
 struct
 {
 float32 low_speed; /* In meters-per-second */
 float32 high_speed; /* In meters-per-second */
 char name[16]; /* Null-terminated speed-zone name */
 } speed_zones[10];
 float32 gear_weight; /* Weight of equipment in kilograms */
 uint8 max_heart_rate; /* In beats-per-minute, must be > 0 */
 uint8 unused1; /* Unused. Set to 0. */
 uint16 unused2; /* Unused. Set to 0. */
 } activities[3];
 float32 weight; /* User’s weight, in kilograms */
 uint16 birth_year; /* No base value (i.e. 1990 means 1990) */
 uint8 birth_month; /* 1 = January, etc. */
 uint8 birth_day; /* 1 = first day of month, etc. */
 uint8 gender; /* See below */
 } D1004_Fitness_User_Profile_Type;

Each element in the “activities” array represents a different sport: “activities[0]” is running, “activities[1]” is biking,
and “activities[2]” is other.

The “gender” member can be one of the following values:
enum
 {
 female = 0,
 male = 1
 };

7.4.47 D1005_Workout_Limits
typedef struct
 {
 uint32 max_workouts; /* Maximum workouts */
 uint32 max_unscheduled_workouts; /* Maximum unscheduled workouts */
 uint32 max_occurrences; /* Maximum workout occurrences */
 } D1005_Workout_Limits;

The “max_workouts” member represents the total number of workouts that the device can hold. The
“max_unscheduled_workouts” member represents the number of workouts the device can hold which do not have any
occurrences (i.e. they are “unscheduled”). The “max_occurrences” member represents the number of workout
occurrences that the device can hold.

As an example, suppose a device can hold 200 total workouts, 25 unscheduled workouts, and 200 occurrences. Under
these circumstances, it would be appropriate to send 175 scheduled workouts, up to 200 combined occurrences of those
scheduled workouts, and 25 workouts that have not been scheduled. Alternately, the device could accept a full 200
scheduled workouts; that would simply leave no room for unscheduled workouts (since the maximum number of
workouts would be reached).

 Page 53 001-00063-00 Rev. C

7.4.48 D1006_Course_Type
typedef struct
 {
 uint16 index; /* Unique among courses on device */
 uint16 unused; /* Unused. Set to 0. */
 char course_name[16]; /* Null-terminated, unique course name */
 uint16 track_index; /* Index of the associated track */
 } D1006_Course_Type;

The value of the “track_index” member must be 0xFFFFFFFF if there is no associated track.

7.4.49 D1007_Course_Lap_Type
typedef struct
 {
 uint16 course_index; /* Index of associated course */
 uint16 lap_index; /* This lap’s index in the course */
 uint32 total_time; /* In hundredths of a second */
 float32 total_dist; /* In meters */
 position_type begin; /* Starting position of the lap */
 position_type end; /* Final position of the lap */
 uint8 avg_heart_rate; /* In beats-per-minute */
 uint8 max_heart_rate; /* In beats-per-minute */
 uint8 intensity; /* Same as D1001 */
 uint8 avg_cadence; /* In revolutions-per-minute */
 } D1007_Course_Lap_Type;

The “begin” and “end” members are invalid if their lat and lon values are 0x7FFFFFFF.

The “avg_heart_rate” and “max_heart_rate” members are invalid if their values are 0.

The “avg_cadence” is invalid if its value is 0xFF.

7.4.50 D1008_Workout_Type
typedef struct
 {
 uint32 num_valid_steps; /* Number of valid steps (1-20) */
 struct
 {
 char custom_name[16]; /* Null-terminated step name */
 float32 target_custom_zone_low; /* See below */
 float32 target_custom_zone_high; /* See below */
 uint16 duration_value; /* Same as D1002 */
 uint8 intensity; /* Same as D1001 */
 uint8 duration_type; /* Same as D1002 */
 uint8 target_type; /* See below */
 uint8 target_value; /* See below */
 uint16 unused; /* Unused. Set to 0. */
 } steps[20];
 char name[16]; /* Null-terminated workout name */
 uint8 sport_type; /* Same as D1000 */
 } D1008_Workout_Type;

All valid steps appear in order at the beginning of the “steps” array.

 Page 54 001-00063-00 Rev. C

The values of “target_type”, “target_value”, “target_custom_zone_low”, and “target_custom_zone_high” in the “steps”
struct are defined as follows:

Table 35 – D1008 Workout Step Targets

target_type target_value target_custom_zone_low target_custom_zone_high
0 = Speed Speed zone (1 –

10). A value of 0
indicates a custom
zone.

Speed in meters per second.
Undefined if not a custom zone.

Speed in meters per second.
Undefined for a non-custom zone.

1 = Heart Rate Heart rate zone (1
– 5). A value of 0
indicates a custom
zone.

A value of 0 – 100 indicated the
percentage of max heart rate. A value
above 100 indicates beats-per-minute
(max of 255) plus 100.
Undefined if not a custom zone.

A value of 0 – 100 indicated the
percentage of max heart rate. A value
above 100 indicates beats-per-minute
(max of 255) plus 100.
Undefined if not a custom zone.

2 = Open Undefined Undefined Undefined
3 = Cadence 0 Cadence in revolutions-per-minute Cadence in revolutions-per-minute
Any value if
the duration
type is
“Repeat”

Number of
repetitions

Undefined Undefined

7.4.51 D1009_Run_Type
typedef struct
 {
 uint16 track_index; /* Index of associated track */
 uint16 first_lap_index; /* Index of first associated lap */
 uint16 last_lap_index; /* Index of last associated lap */
 uint8 sport_type; /* Same as D1000 */
 uint8 program_type; /* See below */
 uint8 multisport; /* See below */
 uint8 unused1; /* Unused. Set to 0. */
 uint16 unused2; /* Unused. Set to 0. */
 struct
 {
 uint32 time; /* Time result of quick workout */
 float32 distance; /* Distance result of quick workout */
 } quick_workout;
 D1008_Workout_Type workout; /* Workout */
 } D1009_Run_Type;

The value of the “track_index” member must be 0xFFFF if there is no associated track.

 Page 55 001-00063-00 Rev. C

The “program_type” member is a bit field that indicates the type of run this is. The following table describes the
meaning of each bit:

Table 36 – Bit Field: program_type

Bit Interpretation
0 (least significant bit) This is a virtual partner run
1 This is associated with a workout
2 This is a quick workout
3 This is associated with a course
4 This is an interval workout
5 This is part of an auto-MultiSport session
6-7 (most significant bits) Undefined. Set to 0.

If the “program_type” member indicates that this run is associated with a course, then the “workout” member contains
the name of the associated course in its “name” field.

The “multisport” member can be one of the following values:
enum
 {
 no = 0, /* Not a MultiSport run */
 yes = 1, /* Part of a MultiSport session */
 yesAndLastInGroup = 2 /* The last of a MultiSport session */
 };

If the “auto MultiSport” bit is set in the “program_type” member, and if the last lap in the run is a rest lap, then that last
lap’s time represents the time during which the user was transitioning to the next sport.

7.4.52 D1010_Run_Type
typedef struct
 {
 uint32 track_index; /* Index of associated track */
 uint32 first_lap_index; /* Index of first associated lap */
 uint32 last_lap_index; /* Index of last associated lap */
 uint8 sport_type; /* Sport type (same as D1000) */
 uint8 program_type; /* See below */
 uint8 multisport; /* Same as D1009 */
 uint8 unused; /* Unused. Set to 0. */
 struct
 {
 uint32 time; /* Time result of virtual partner */
 float32 distance; /* Distance result of virtual partner */
 } virtual_partner;
 D1002_Workout_Type workout; /* Workout */
 } D1010_Run_Type;

The value of the “track_index” member must be 0xFFFFFFFF if there is no associated track.

All laps between “first_lap_index” and “last_lap_index” are also contained in the run.

The “program_type” member can be one of the following values:
enum
 {
 none = 0,
 virtual_partner = 1, /* Completed with Virtual Partner */
 workout = 2, /* Completed as part of a workout */
 auto_multisport = 3 /* Completed as part of an auto MultiSport */
 };

 Page 56 001-00063-00 Rev. C

The values in the “virtual_partner” struct is considered valid only if “program_type” is equal to “virtual_partner”.

The value of the “workout” member is considered valid only if “program_type” is equal to “workout”.

If “program_type” is equal to “auto_multisport” and if the last lap in the run is a rest lap, then that last lap’s time
represents the time during which the user was transitioning to the next sport.

7.4.53 D1011_Lap_Type
typedef struct
 {
 uint16 index; /* Unique among all laps received from device */
 uint16 unused; /* Unused. Set to 0. */
 time_type start_time; /* Start of lap time */
 uint32 total_time; /* Duration of lap, in hundredths of a second */
 float32 total_dist; /* Distance in meters */
 float32 max_speed; /* In meters per second */
 position_type begin; /* Invalid if both lat and lon are 0x7FFFFFFF */
 position_type end; /* Invalid if both lat and lon are 0x7FFFFFFF */
 uint16 calories; /* Calories burned this lap */
 uint8 avg_heart_rate; /* In beats-per-minute, 0 if invalid */
 uint8 max_heart_rate; /* In beats-per-minute, 0 if invalid */
 uint8 intensity; /* Same as D1001 */
 uint8 avg_cadence; /* In revolutions-per-minute, 0xFF if invalid */
 uint8 trigger_method; /* See below */
 } D1011_Lap_Type;

The “trigger_method” member represents the way in which this lap was started. It can be one of the following values:
enum
 {
 manual = 0,
 distance = 1,
 location = 2,
 time = 3,
 heart_rate = 4
 };

7.4.54 D1012_Course_Point_Type
typedef struct
 {
 char name[11]; /* Null-terminated name */
 uint8 unused1; /* Unused. Set to 0. */
 uint16 course_index; /* Index of associated course */
 uint16 unused2; /* Unused. Set to 0. */
 time_type track_point_time; /* Time */
 uint8 point_type; /* See below */
 } D1012_Course_Point_Type;

All course points must be unique based on the combination of their course_index and track_point_time.

The “point_type” member can be one of the following values:

 Page 57 001-00063-00 Rev. C

enum
 {
 generic = 0,
 summit = 1,
 valley = 2,
 water = 3,
 food = 4,
 danger = 5,
 left = 6,
 right = 7,
 straight = 8,
 first_aid = 9,
 fourth_category = 10,
 third_category = 11,
 second_category = 12,
 first_category = 13,
 hors_category = 14,
 sprint = 15
 };

7.4.55 D1013_Course_Limits_Type
typedef struct
 {
 uint32 max_courses; /* Maximum courses */
 uint32 max_course_laps; /* Maximum course laps */
 uint32 max_course_pnt; /* Maximum course points */
 uint32 max_course_trk_pnt; /* Maximum course track points */
 } D1013_Course_Limits_Type;

 Page 58 001-00063-00 Rev. C

8 Appendixes

8.1 Device Product IDs

The table below provides the Product ID numbers for many Garmin devices.

Table 37 – Product IDs

Product Name ID
GNC 250 52
GNC 250 XL 64
GNC 300 33
GNC 300 XL 98
GPS 12 77
GPS 12 87
GPS 12 96
GPS 12 XL 77
GPS 12 XL 96
GPS 12 XL Chinese 106
GPS 12 XL Japanese 105
GPS 120 47
GPS 120 Chinese 55
GPS 120 XL 74
GPS 125 Sounder 61
GPS 126 95
GPS 126 Chinese 100
GPS 128 95
GPS 128 Chinese 100
GPS 150 20
GPS 150 XL 64
GPS 155 34
GPS 155 XL 98
GPS 165 34
GPS 38 41
GPS 38 Chinese 56
GPS 38 Japanese 62
GPS 40 31
GPS 40 41
GPS 40 Chinese 56
GPS 40 Japanese 62
GPS 45 31
GPS 45 41
GPS 45 Chinese 56
GPS 45 XL 41
GPS 48 96
GPS 50 7
GPS 55 14
GPS 55 AVD 15
GPS 65 18
GPS 75 13
GPS 75 23
GPS 75 42
GPS 85 25
GPS 89 39
GPS 90 45

 Page 59 001-00063-00 Rev. C

Product Name ID
GPS 92 112
GPS 95 24
GPS 95 35
GPS 95 AVD 22
GPS 95 AVD 36
GPS 95 XL 36
GPS II 59
GPS II Plus 73
GPS II Plus 97
GPS III 72
GPS III Pilot 71
GPSCOM 170 50
GPSCOM 190 53
GPSMAP 130 49
GPSMAP 130 Chinese 76
GPSMAP 135 Sounder 49
GPSMAP 175 49
GPSMAP 195 48
GPSMAP 205 29
GPSMAP 205 44
GPSMAP 210 29
GPSMAP 215 88
GPSMAP 220 29
GPSMAP 225 88
GPSMAP 230 49
GPSMAP 230 Chinese 76
GPSMAP 235 Sounder 49

8.2 Device Protocol Capabilities

Table 38 below provides the protocol capabilities of many devices that do not implement the Protocol Capability
Protocol (see section 6.2 on page 9). Column 1 contains the applicable Product ID number, and Column 2 contains
the applicable software version number. The remaining columns show the device-specific protocol IDs and data type
IDs for the types of protocols indicated. Within these remaining columns, protocol IDs are prefixed with P, L, or A
(Physical, Link, or Application) and data type IDs are prefixed with D.

The presence of a device in the table indicates that the device did not originally implement the Protocol Capabilities
Protocol (A001). However, if the host detects that one of these devices now provides Protocol Capabilities Protocol
data (due to a new version of software loaded in the device), then Protocol Capabilities Protocol data shall take
precedence over the data provided in the table below.

The following protocols are omitted from the table because all devices in the table implement them:

A000 Product Data Protocol
A600 Date and Time Initialization Protocol
A700 Position Initialization Protocol

All devices in the table use the D600 data type in conjunction with the A600 protocol; similarly, all devices in the table
use the D700 data type in conjunction with the A700 protocol. The A800/D800 protocol and data type are omitted from
the table because none of the devices in the table implements PVT Data transfer.

 Page 60 001-00063-00 Rev. C

Note: all numbers are in decimal format.

Table 38 – Device Protocol Capabilities

ID Version Link Command Waypoint Route Track Proximity Almanac
7 All L001 A010 A100

D100
A200
D200
D100

 A500
D500

25 All L001 A010 A100
D100

A200
D200
D100

A300
D300

A400
D400

A500
D500

13 All L001 A010 A100
D100

A200
D200
D100

A300
D300

A400
D400

A500
D500

14 All L001 A010 A100
D100

A200
D200
D100

 A400
D400

A500
D500

15 All L001 A010 A100
D151

A200
D200
D151

 A400
D151

A500
D500

18 All L001 A010 A100
D100

A200
D200
D100

A300
D300

A400
D400

A500
D500

20 All L002 A011 A100
D150

A200
D201
D150

 A400
D450

A500
D550

22 All L001 A010 A100
D152

A200
D200
D152

A300
D300

A400
D152

A500
D500

23 All L001 A010 A100
D100

A200
D200
D100

A300
D300

A400
D400

A500
D500

24 All L001 A010 A100
D100

A200
D200
D100

A300
D300

A400
D400

A500
D500

29 < 4.00 L001 A010 A100
D101

A200
D201
D101

A300
D300

A400
D101

A500
D500

29 >= 4.00 L001 A010 A100
D102

A200
D201
D102

A300
D300

A400
D102

A500
D500

31 All L001 A010 A100
D100

A200
D201
D100

A300
D300

 A500
D500

33 All L002 A011 A100
D150

A200
D201
D150

 A400
D450

A500
D550

34 All L002 A011 A100
D150

A200
D201
D150

 A400
D450

A500
D550

35 All L001 A010 A100
D100

A200
D200
D100

A300
D300

A400
D400

A500
D500

36 < 3.00 L001 A010 A100
D152

A200
D200
D152

A300
D300

A400
D152

A500
D500

 Page 61 001-00063-00 Rev. C

ID Version Link Command Waypoint Route Track Proximity Almanac
36 >= 3.00 L001 A010 A100

D152
A200
D200
D152

A300
D300

 A500
D500

39 All L001 A010 A100
D151

A200
D201
D151

A300
D300

 A500
D500

41 All L001 A010 A100
D100

A200
D201
D100

A300
D300

 A500
D500

42 All L001 A010 A100
D100

A200
D200
D100

A300
D300

A400
D400

A500
D500

44 All L001 A010 A100
D101

A200
D201
D101

A300
D300

A400
D101

A500
D500

45 All L001 A010 A100
D152

A200
D201
D152

A300
D300

 A500
D500

47 All L001 A010 A100
D100

A200
D201
D100

A300
D300

 A500
D500

48 All L001 A010 A100
D154

A200
D201
D154

A300
D300

 A500
D501

49 All L001 A010 A100
D102

A200
D201
D102

A300
D300

A400
D102

A500
D501

50 All L001 A010 A100
D152

A200
D201
D152

A300
D300

 A500
D501

52 All L002 A011 A100
D150

A200
D201
D150

 A400
D450

A500
D550

53 All L001 A010 A100
D152

A200
D201
D152

A300
D300

 A500
D501

55 All L001 A010 A100
D100

A200
D201
D100

A300
D300

 A500
D500

56 All L001 A010 A100
D100

A200
D201
D100

A300
D300

 A500
D500

59 All L001 A010 A100
D100

A200
D201
D100

A300
D300

 A500
D500

61 All L001 A010 A100
D100

A200
D201
D100

A300
D300

 A500
D500

62 All L001 A010 A100
D100

A200
D201
D100

A300
D300

 A500
D500

64 All L002 A011 A100
D150

A200
D201
D150

 A400
D450

A500
D551

 Page 62 001-00063-00 Rev. C

ID Version Link Command Waypoint Route Track Proximity Almanac
71 All L001 A010 A100

D155
A200
D201
D155

A300
D300

 A500
D501

72 All L001 A010 A100
D104

A200
D201
D104

A300
D300

 A500
D501

73 All L001 A010 A100
D103

A200
D201
D103

A300
D300

 A500
D501

74 All L001 A010 A100
D100

A200
D201
D100

A300
D300

 A500
D500

76 All L001 A010 A100
D102

A200
D201
D102

A300
D300

A400
D102

A500
D501

77 < 3.01 L001 A010 A100
D100

A200
D201
D100

A300
D300

A400
D400

A500
D501

77 >= 3.01
< 3.50

L001 A010 A100
D103

A200
D201
D103

A300
D300

A400
D403

A500
D501

77 >= 3.50
< 3.61

L001 A010 A100
D103

A200
D201
D103

A300
D300

 A500
D501

77 >= 3.61 L001 A010 A100
D103

A200
D201
D103

A300
D300

A400
D403

A500
D501

87 All L001 A010 A100
D103

A200
D201
D103

A300
D300

A400
D403

A500
D501

88 All L001 A010 A100
D102

A200
D201
D102

A300
D300

A400
D102

A500
D501

95 All L001 A010 A100
D103

A200
D201
D103

A300
D300

A400
D403

A500
D501

96 All L001 A010 A100
D103

A200
D201
D103

A300
D300

A400
D403

A500
D501

97 All L001 A010 A100
D103

A200
D201
D103

A300
D300

 A500
D501

98 All L002 A011 A100
D150

A200
D201
D150

 A400
D450

A500
D551

100 All L001 A010 A100
D103

A200
D201
D103

A300
D300

A400
D403

A500
D501

105 All L001 A010 A100
D103

A200
D201
D103

A300
D300

A400
D403

A500
D501

106 All L001 A010 A100
D103

A200
D201
D103

A300
D300

A400
D403

A500
D501

 Page 63 001-00063-00 Rev. C

ID Version Link Command Waypoint Route Track Proximity Almanac
112 All L001 A010 A100

D152
A200
D201
D152

A300
D300

 A500
D501

8.3 Frequently Asked Questions

8.3.1 Hexadecimal vs. Decimal Numbers

Q: Why doesn’t the document contain hexadecimal numbers?

A: Having both decimal and hexadecimal numbers introduces dual-maintenance, which is twice the work and prone to
errors. Therefore, we chose to use a single numbering system. We chose decimal because it made the overall document
easier to understand.

8.3.2 Length of Received Data Packet

Q: Should my program look at the length of an incoming packet to detect which waypoint format is being sent from the
device?

A: Prior to having a definitive interface specification, this was probably the best approach. However, now you should
follow the recommendations of the specification and use the Protocol Capabilities Protocol (see section 6.2 on page 9)
or Table 38 on page 61 to explicitly determine the waypoint format. Validating data based on length is undesirable
because: 1) it doesn’t validate the integrity of the data (this is done at the link layer using a checksum); and 2) there is
some possibility that the device will transmit a few extra bytes at the end of the data, which would invalidate an
otherwise valid packet (you can safely ignore the extra bytes).

8.3.3 Waypoint Creation Date

Q: Isn't the “unused” uint32 in waypoint formats really the date of waypoint creation?

A: Only a few of our very early devices used this field for creation date. All other devices treat it as “unused.” Your
program should ignore this field when receiving and set it to zero when transmitting.

8.3.4 Almanac Data Parameters

Q: What is meaning of the almanac data parameters such as wn, toa, af0, etc.?

A: No definitions for these parameters are given other than what is provided in the comments. In most cases, a program
should simply upload and download this data. Otherwise, the comments should suffice for most applications.

8.3.5 Example Code

Q: Where can I find example code (e.g., for converting time and position formats)?

A: We currently don’t have the resources to provide this information.

8.3.6 Sample Data Transfer Dumps

Q: Where can I find some sample data transfer dumps?

A: We currently don’t have the resources to provide this information.

8.3.7 Additional Tables

 8.1Q: Why doesn’t the document contain additional tables (e.g., an additional table in Section sorted by Product ID)?

 Page 64 001-00063-00 Rev. C

A: We believe the document contains all the necessary information with minimal duplication. Additional sorting may
be performed by the copy/pasting the data into your favorite spreadsheet.

8.3.8 Software Versions

Q: Why doesn’t Table 37 include an indication of software version?

A: We currently don’t have the resources to provide this information. The purpose of the table is to allow you to
determine the Product IDs for the devices you wish to support. For example, to support a GPS 12 you must support
Product IDs 77, 87, and 96 and their associated protocols from Table 38.

 Page 65 001-00063-00 Rev. C

	1 Introduction
	1.1 Overview
	1.2 Definition of Terms
	1.3 Specification of Data Types
	2 Protocol Layers
	3 Physical Protocols
	3.1 Serial Protocol
	3.1.1 Serial Packet Format
	3.1.2 DLE Stuffing
	3.1.3 ACK/NAK Handshaking
	3.1.4 Serial Protocol Packet IDs

	3.2 USB Protocol
	3.2.1 USB Protocol Details
	3.2.2 USB Packet Format
	3.2.3 USB Protocol Layer Packet Ids
	3.2.3.1 Data Available Packet
	3.2.3.2 Start Session Packet
	3.2.3.3 Session Started Packet

	3.2.4 Garmin USB Driver for Microsoft Windows
	3.2.4.1 Device Interface GUID
	3.2.4.2 Constants
	3.2.4.3 ReadFile, WriteFile Functions
	3.2.4.4 IOCTLS

	4 Link Protocols
	4.1 L000 – Basic Link Protocol
	4.1.1 Basic Packet IDs

	4.2 L001 – Link Protocol 1
	4.3 L002 – Link Protocol 2

	5 Overview of Application Protocols
	5.1 Undocumented Application Packets
	5.2 Packet Sequences
	5.3 Packet Data Types
	5.4 Standard Beginning and Ending Packets
	5.4.1 Records_Type

	5.5 Device Overwriting of Identically-Named Data

	6 Application Protocols
	6.1 A000 – Product Data Protocol
	6.1.1 Product_Data_Type
	6.1.2 Ext_Product_Data_Type

	6.2 A001 – Protocol Capability Protocol
	6.2.1 Protocol_Array_Type
	6.2.2 Protocol_Data_Type
	6.2.3 Tag Values for Protocol_Data_Type
	6.2.4 Protocol Capabilities Example

	6.3 Device Command Protocols
	6.3.1 A010 – Device Command Protocol 1
	6.3.2 A011 – Device Command Protocol 2

	6.4 A100 – Waypoint Transfer Protocol
	6.5 A101 – Waypoint Category Transfer Protocol
	6.6 Route Transfer Protocol
	6.6.1 Database Matching for Route Waypoints
	6.6.2 A200 – Route Transfer Protocol
	6.6.3 A201 – Route Transfer Protocol

	6.7 Track Log Transfer Protocol
	6.7.1 Time Values Ignored by Device
	6.7.2 A300 – Track Log Transfer Protocol
	6.7.3 A301 – Track Log Transfer Protocol
	6.7.4 A302 – Track Log Transfer Protocol

	6.8 A400 – Proximity Waypoint Transfer Protocol
	6.9 A500 – Almanac Transfer Protocol
	6.10 A600 – Date and Time Initialization Protocol
	6.11 A650 – FlightBook Transfer Protocol
	6.12 A700 – Position Initialization Protocol
	6.13 A800 – PVT Protocol
	6.14 A906 – Lap Transfer Protocol
	6.15 A1000 – Run Transfer Protocol
	6.16 A1002 – Workout Transfer Protocol
	6.17 A1004 – Fitness User Profile Transfer Protocol
	6.18 A1005 – Workout Limits Transfer Protocol
	6.19 A1006 – Course Transfer Protocol
	6.20 A1009 – Course Limits Transfer Protocol

	7 Data Types
	7.1 Serialization of Data
	7.2 Character Sets
	7.3 Basic Data Types
	7.3.1 char
	7.3.2 Character Arrays
	7.3.3 Variable-Length Strings
	7.3.4 uint8
	7.3.5 uint16
	7.3.6 uint32
	7.3.7 sint16
	7.3.8 sint32
	7.3.9 float32
	7.3.10 float64
	7.3.11 bool
	7.3.12 position_type
	7.3.13 radian_position_type
	7.3.14 time_type
	7.3.15 symbol_type

	7.4 Product-Specific Data Types
	7.4.1 D100_Wpt_Type
	7.4.2 D101_Wpt_Type
	7.4.3 D102_Wpt_Type
	7.4.4 D103_Wpt_Type
	7.4.5 D104_Wpt_Type
	7.4.6 D105_Wpt_Type
	7.4.7 D106_Wpt_Type
	7.4.8 D107_Wpt_Type
	7.4.9 D108_Wpt_Type
	7.4.10 D109_Wpt_Type
	7.4.11 D110_Wpt_Type
	7.4.12 D120_Wpt_Cat_Type
	7.4.13 D150_Wpt_Type
	7.4.14 D151_Wpt_Type
	7.4.15 D152_Wpt_Type
	7.4.16 D154_Wpt_Type
	7.4.17 D155_Wpt_Type
	7.4.18 D200_Rte_Hdr_Type
	7.4.19 D201_Rte_Hdr_Type
	7.4.20 D202_Rte_Hdr_Type
	7.4.21 D210_Rte_Link_Type
	7.4.22 D300_Trk_Point_Type
	7.4.23 D301_Trk_Point_Type
	7.4.24 D302_Trk_Point_Type
	7.4.25 D303_Trk_Point_Type
	7.4.26 D304_Trk_Point_Type
	7.4.27 D310_Trk_Hdr_Type
	7.4.28 D311_Trk_Hdr_Type
	7.4.29 D312_Trk_Hdr_Type
	7.4.30 D400_Prx_Wpt_Type
	7.4.31 D403_Prx_Wpt_Type
	7.4.32 D450_Prx_Wpt_Type
	7.4.33 D500_Almanac_Type
	7.4.34 D501_Almanac_Type
	7.4.35 D550_Almanac_Type
	7.4.36 D551_Almanac_Type
	7.4.37 D600_Date_Time_Type
	7.4.38 D650_FlightBook_Record_Type
	7.4.39 D700_Position_Type
	7.4.40 D800_Pvt_Data_Type
	7.4.41 D906_Lap_Type
	7.4.42 D1000_Run_Type
	7.4.43 D1001_Lap_Type
	7.4.44 D1002_Workout_Type
	7.4.45 D1003_Workout_Occurrence_Type
	7.4.46 D1004_Fitness_User_Profile_Type
	7.4.47 D1005_Workout_Limits
	7.4.48 D1006_Course_Type
	7.4.49 D1007_Course_Lap_Type
	7.4.50 D1008_Workout_Type
	7.4.51 D1009_Run_Type
	7.4.52 D1010_Run_Type
	7.4.53 D1011_Lap_Type
	7.4.54 D1012_Course_Point_Type
	7.4.55 D1013_Course_Limits_Type

	8 Appendixes
	8.1 Device Product IDs
	8.2 Device Protocol Capabilities
	8.3 Frequently Asked Questions
	8.3.1 Hexadecimal vs. Decimal Numbers
	8.3.2 Length of Received Data Packet
	8.3.3 Waypoint Creation Date
	8.3.4 Almanac Data Parameters
	8.3.5 Example Code
	8.3.6 Sample Data Transfer Dumps
	8.3.7 Additional Tables
	8.3.8 Software Versions

