r Q

SiRF

i @

SRFstarlle
System Devel opment Kit
User’s Guide

Part 1 — Software

SiRF Technology, Inc.

148 East Brokaw Road
San Jose, CA 95112 U.SA.
Phone: +1 (408) 467-0410
Fax: +1 (408) 467-0420
www.sirf.com

1050-0035
May 2002, Revision 1.4

SiRF and SiRF identity are trademarks of SIRF Technology, Inc. This document contains information on a product under devel opment
at SIRF. The information is intended to help you evaluate this product. SiRF reserves the right to change or discontinue work on this
proposed product without notice.

SRFstarlle SystemDevel opment Kit User 'sGuide
Part 1—Software

© 2000-2002 SiRF Technology, Inc. All rightsreserved.

About ThisDocument

Thisdocument containsinformation on SiIRF products. SiRF Technology, Inc. reservestheright to make
changesin its products, specifications and other information at any time without notice. SiRF assumes no
liability or responsibility for any claimsor damages arising out of the use of this document, or from the use of
integrated circuits based on this document, including, but not limited to claims or damages based on
infringement of patents, copyrights or other intellectual property rights. SiRF makes no warranties, either
express or implied with respect to theinformation and specifications contained in this document. Performance
characteristicslisted in this data sheet do not constitute awarranty or guarantee of product performance. All
termsand conditions of sale are governed by the SIRF Terms and Conditions of Sale, acopy of which you may
obtain from your authorized SiRF salesrepresentative.

GettingHelp

If you have any problemsinstalling or using your System Development Kit, call or send an e-mail to the SIRF
Technology Customer Support Group:

phone +1(408) 467-0410

e-mail support@sirf.com

Contents

Preface XV
1. System Development Kit Overview........................ 1-1
The S2SDK DevelopmentBoardov... 1-1
S2SDK Connectionsand Functions 1-1
Default Jumper Settingsforthe S2SDK 1-3
The GSW2 Software. e 1-3
Standard Variable Types. o i 1-4
GPS COreOVerVIeWt 1-5
Module Interface Overview, 1-5
User Interface Overview.t 1-5
Tasking OVEIVIEW o e e 1-6
MemOory OVEIVIEWot e 1-6
UART OVEIVIEBW. . . oottt e e 1-7
Toolkit Software. 1-7
SIRFAEMO. 1-7

SIRFteSt ... 1-8
SIRFSIg. ..o 1-8
Additional Utilities............ ... i 1-8
SiRFstarlle System Development KitCD. 1-9
Installation 2-1
Installingthe S2SDK 2-1
Environment Considerationscovu... 2-1
Connectingthe S2SDK.. i 2-1
Installing the Toolkit Software 2-2
Installing ARM Development Tools.o... 2-3
The ADS Development Environment. 2-3
The ARM Multi-ICE and Software 2-4
Available System ResoUrces.t 31
ROM/RAM Requirements, 31
Stack Requirements i i e e 31
Adding Elementsto Battery Backed SRAM 31
Check Space Left in Battery-Backed Memory 3-2
Add User Element to Battery-Backed Memory Structure. 3-2
Add New Code to SRAM Access Functions 3-2
SoftwareBuild Process. 4-1
Software Build Processand Variants 4-1
Creatingan SDK BuildUsingADS 4-2
Basic CompileSwitches. 4-5
Flash Programmingoiitiiiiinn.n. 5-1
Downloading Software using SiRFflash. 5-1
Reading FlashMemory. 5-3
Supporting Different Flash Types. oo oL, 54
Development and Debugging. ... 6-1
AddingaUserVersion Stringo i 6-1
Multi-ICEDebugging. 6-4

SRFstarlle System Development Kit User’s Guide — Part 1 — Software—May 2002

Contents

ADSand Multi-ICEDebugging., 6-4

PRINTFDebugging i 6-9
NMEA Debug Output.t 6-10
SIRF Binary Debug Output, 6-11

S2SDK LED Activationcouii i 6-12

GPSPeformance Testing. oot 6-12

Using PROCOMM to Send NMEA Messages 6-13

NMEA Checksum Utility i 6-13

Uploading Code to SiRFstarlle without SiRFflash. 6-14
Internal Boot Operation, 6-15

Memory BUSand Components.covvnvnn .. 7-1

MEMOMY . . v e et e e e e e e e e e 7-1
Scatter LoadingFiles 7-1
Memory AreasintheGSP2et 7-5

MemOory Map ...t e e 7-7
Remap Function............ 7-7
Memory Map Configuration. 7-8

INpUt/OUtPUt MESSAgES i i i e e 8-1

Changing Default Message Settings. oo 8-1
Default Output Protocol 8-1
DefaultBaudRate 8-2
Default MessageQutput Rates, 8-3

Adding New Input/Output Messagescoevvvvnn.. 8-6
Limitationson MessagelLength 8-7
SIRFBINary 8-7
NMEA e 8-17

Low Power Operationot . 9-1

TricklePower. 9-1
ECLK TricklePower. i 9-2
GPSCLK TricklePower 9-3
Enabling/Disabling TricklePower. 9-4

\'

Vi

10.

11.

12.

13.

Push-to-FixX 9-10

Enabling/Disabling Push-to-Fix 9-10
Setting Low Power Acquisition Parameters 9-13
User Tasks, ASIC Interrupts, and the Scheduler 10-1
ASIC INterrupts. . ..o e 10-2

Timerinterrupt.o 10-3

UART Interrupt o e 10-3

Low Power Operation Interrupt 10-3

BeaconInterrupt. e 10-3
AddingalUser Task. . .. oo i e 104
Start/Stop GPSFunctions. i e 10-5
DGPS Operation.ovvi i 11-1
Setting Differential CorrectionSource 11-1
SIRF Binary Messages for Differential 11-2

Set DGPS Source Control (MID 0x85). 11-2

DGPS Status(MID OX1B)ot 11-3
Module Interface Routines for Differential 11-4
AddingaNew User Protocol 12-1
Protocol Implementation. 12-1
USERL Protocolot 12-4
Single Character Delivery. i e 12-12
GPIO Lines, Throughput and Wait States 13-1
GPIOLINES. ..o 13-1
ChipSelect Wait States., 135
Converting UTC Timeto GPS Week Number and TOW A-1
SIRF Binary Messaging Functions B-1
SIRFBIiNary MESSagESo i it i i e i e e B-1

Functionsfor InputMessages, B-4

Functionsfor Qutput Messages vt iievi i B-8
ModulelnterfaceDetails C-1

SRFstarlle System Development Kit User’s Guide — Part 1 — Software—May 2002

Contents

Module Interface Routines C-2
GetCOG . . .o C-2
GetDate C-3
MI_GEDAUM . . o oo e e e e e e C-4
ConvertTowtoUTC. C-4
ConvertECEFOLTP.o C-5
ConvertLTPtoOECEF C-5
MI_GEBOBPS. . .« v e e eee e e e e e C-6
MI_GEAIM .« oo e e C-7
MI_SBAIM © oot e C-7
UL GELCPUCIKRAIE. . . . o v vt e et c-8
MI_GetCIKBIasSt C-8
MI_GetCIKDrift C9
MI_GetDgPSSIC. . o vt e e C-9
MI_SetDgPSSIC . .o oo C-9
MI_GetDatum C-11
MI_SEtDAUM. . . .o et e et e e e e e C-11
Ml _GetDgps Mode. i c-11
MI _SetDgps Modet e cC-11
Ml _GetDgpsAIm C-12
MI_GetDgpsSCOITAQE. . . . v oo e e e C-13
MI_GetDgpsBeacon.o i C-14
MI_SetDgpsBeacon.c i C-14
MI_GetDgpsSpecialMsg C-15
MI_GetDgpsStationID C-16
MI_GetDgpsStationPoS C-16
MI_GEtDOPMASK . .« . v e e e e e C-17
MI_SEDOPMESK . . . e v oo e e e e C-17
MI_GEtEIGVMASK. . . . v oot e C-18
MI_SetElevMask C-18

vii

viii

MI_GEIEDPN .\ et C-19

MI_SEEPN .« oot C-19
MI_GetEStGPSTIme o C-20
MI_GetLPAcgParams i C-20
MI_SetLPAcgParams. C-20
MI_GetLowPower i C-21
MI_SetLowPower C-21
MI_GetNavDOops e C-23
MI_GetNavFom. C-24
MI_GetNavinit. C-25
MI_SetNavinit. C-25
MI_GetNavMode. o e C-26
MI_GetNavModeMask C-28
MI_SetNavModeMasK. C-28
MI_GetNavList C-29
MI _GetPosEcef C-30
MI_GetPositionLTP.......... C-31
MI_GEPWIMASK . . . oot e e e C-31
MI_SetPwrMask C-31
MI _GetRawTrkData. e C-32
MI_GetSWVersion. ... C-33
Ml _GetStaticNavo e C-34
MI_SetStaticNav C-34
MI_GetThroughput i, C-35
MI_GetGPSTIme. C-35
MI_ GetTrkDatao e e e e C-35
MI_GetTrkStatelist.o C-37
Ul GetUartCIKRate e C-37
MI_GetUTC. .. e C-38
MI _GetVelEcef C-39
MI_GetVelNed. C-39

SRFstarlle System Development Kit User’s Guide — Part 1 — Software—May 2002

Contents

MI_GetGSPVErSioNot e C-40

MI_GEEVISLISE . . v et e e e e C-40
MI_SetComm. e C-141
MI_SetDgpPSCOITS . .. e C-42
MI_SetNmeaProto C-43
MI_SetUiProto. . ..o e e e C-44
MI_SetBaud. ... C-45

Ml GPSSIOD ..ot C-46
MI_GPSStart C-46
MI_GetEstPosError C-47
MI_GetPtfPeriod C-48
MI_SetPtfPeriod C-48

Ml _GetTestModeData C-48
MI_SetTestModeo e e C-48
MI_GetUserDRTImMeout.iv i C-50
MI_SetUserDRTIMeoUtt i e C-50
MI_GetUserParamso e e C-50

MI _SetUserParams ...t C-50

MI _LpDbgOutput i C-51
MI_GEHULCOFFSEE v e et e e et e C-51
MI_SetUtcOffset C-51

Ml _SetShasPrn e e C-52
Error EllipseFunctions D-1
Computation of Navigation Error Ellipse..................... D-1
File DesCriptions. e e E-1
FileOrganizationcc0 i, E-1
Start-Up . .o E-1
GPS O, . ot E-1
TasKINg. . oot E-2
UART e e E-2
UserInterface. E-2

ix

Module Interface (including utility files). E-3
Individual FileDescriptions., E-3
Non SDK Source/BuildFiles ii.t. E-10

F. Acronyms, Abbreviationsand Glossary F-1

SRFstarlle System Development Kit User’s Guide — Part 1 — Software—May 2002

Figures

Figure 1-1 S2SDK Development Board with attached RFBL daughter board.. 1-1

Figure 1-2 SiRFstarlle SDK Software Architecture 1-4
Figure 2-1 S2SDK CONNECIONS. . .. v v ettt it et e 2-2
Figure 2-2 WinZip Self-Extractor Window, 2-3
Figure 4-1 The SDK Code Directory Structure., 4-2
Figure 4-2 Metrowerks CodeWarrier Start-Up Window used in the ADS Environment
4-3
Figure 4-3 Window Displaying How to Make a HwtFlash Variant 4-3
Figure 4-4 ADS Errorsand WarningsWindow. 4-4
Figure 4-5 Setting ADS Compiler Preprocessor #DEFINES. 4-7
Figure 5-1 The SIRFflash Software. oot 5-2
Figure 6-1 Multi-1CE Server Program After Successful Connection 6-4
Figure 6-2 The Load Debug Symbolsdiaog..ccovvun... 6-5
Figure 6-3 Debugger window after athe code has been stopped. 6-6
Figure 6-4 Multi-1CE Server Program After Successful Connection 6-7
Figure 6-5 Debugger window after athe code has been stopped. 6-9

Xi

Figure 9-1 Diagram for ECLK TricklePower Showing the Various States and

Approximate Current Consumption. 9-3
Figure10-1 Workingsof theScheduler............, 10-2
Figure12-1 Protocol Redirection. i, 12-2
Figure 12-2 Overview of Uart Structure and Effect of Changing Protocal 12-4
Figure 12-3 Output Sequence for USER1 Protocol 12-5

Xii SRFstarlle System Development Kit User’s Guide — Part 1 — Software—May 2002

Tables

Table1-1 Additional Utilities. 1-8
Table1-2 CD Directory Structuret 1-9
Table4-1 User defined and changeable preprocessor options.. 4-5
Table 4-2 Essential preprocessor options that are not to be changed. 4-6

Table 4-3 Preprocessor options that are not supported and are not to be used. 4-6

Table 7-1 Memory Mapfor Internal Bootcoiuu... 7-6
Table 7-2 Memory Map for External Boot.t 7-7
Table 7-3 Memory Map WithoutRemap, 7-8
Table 7-4 Memory Map AfterRemap ..., 7-9
Table 7-5 Memory MapWithoutRemap, 7-9
Table 7-6 Memory Map AfterRemap i 7-9
Table 9-1 Summary of Clock Sourcesfor ECLK TricklePower States. 9-4
Table 9-2 Summary of Clock Sourcesfor GPSCLK TricklePower States. ... 9-4
Table 13-1 GPIOs and Alternate Functionsonthe GSP2e. 13-3

Table 13-2 Clocks and Wait States to Access External Memory, with and without
CacheEnabled i 13-6

Table 13-3 Multiplier for Number of Clocks Required for Memory Access. .. 13-6

Xiii

Xiv SRFstarlle System Development Kit User’s Guide — Part 1 — Software—May 2002

Preface

The SRFstarlle System Development Kit User’s Guide Part 1 — Software describes the
architecture, implementation and modification of the SIRF Software which runs on
SiRFstarlle enabled platforms. This manual guides you through compiling and loading
a standard SiRF build to the generation of custom code for user specific applications.
A great amount of flexibility and code infrastructure has been provided by SIRF to aid
in the development of custom messaging, 1/0 protocols, low power operation, and user
tasking.

ills Required to Use the System Devel opment Kit

The System Development Kit (SDK) may be used at very different levels. At a
minimum, a developer who intends to use the SDK must be proficient with the C
programming language and standard compiler/linker tools. This is enough knowledge
to make minor changes to the operation of the SiRF software such as modifying or
adding serial messages.

Read and understand the SRFstarlle Evaluation Kit User’s Guide. It is highly
recommended that you spend some time using the receiver module with the supplied
Si r f denp software. This is important to understanding the GPS and default module
behavior because some topics in this manual are described at great length in the
SRFstarlle Evaluation Kit User’s Guide.

To modify hardware platforms, you will need a hardware engineer to design and debug
the new platform. To make hardware changes to the SiRF platform you must have
experience developing applications for embedded systems and knowledge of serial
communications, In Circuit Emulators (ICE), device programmers, CPU startup code
issues, and basic digital design. GPS knowledge is a plus but not necessarily a
requirement. The depth of the required skills directly depends on the complexity of the
application that you are developing.

XV

How This Guide IsOrganized

XVi

The SRFstarlle System Development Kit User’s Guide Part 1 — Software is the first
part in a series of three manuals that complete the System Development Kit User’s
Guide. The remaining parts provide information about the GSP2e chip and the S2SDK
hardware platform.

The SRFstarlle System Development Kit User’s Guide Part 1 — Software is organized
in the following manner:

Chapter 1, “System Development Kit Overview” provides a brief overview of the
SiRFstarlle System Development Kit including a board description and the
architecture.

Chapter 2, “Installation” describes the installation of the S2SDK board, the software,
and the System Development Kit software tools.

Chapter 3, “Available System Resources’ lists the amount of RAM/ROM, stack and
battery-backed memory that is available for custom development.

Chapter 4, “ Software Build Process’” demonstrates how to build the Software using
the ARM development tools. This chapter also lists the SiRF-defined preprocessor
definitions and their functions along with implementation details.

Chapter 5, “Flash Programming” provides instructions for using the flash
programming tool - SiRFflash.

Chapter 6, “Development and Debugging” provides an overview of debugging
strategies, capabilities and tools for the S2SDK board.

Chapter 7, “Memory BUS and Components” details the memory map of the
SiRFstarlle for internal and external boot mode and provides information on the scatter
loading files used to define the memory areas and locations at run-time and load-time.

Chapter 8, “Input/Output Messages’ describes how to add new SiRF binary or
NMEA type input and output messages. Explains how to set different protocols as
default and change the default Baud rates. This chapter also describes how to set the
output rates for different messages.

Chapter 9, “Low Power Operation” provides an overview of the low power
operation of the SiRFstarlle, and lists the relevant Low Power parameters and how to
set them.

Chapter 10, “User Tasks, ASIC Interrupts, and the Scheduler” describes the
implementation of user tasks and how the scheduler functions.

Chapter 11, “DGPS Operation” explains how to set up the default differential source
and details new messages for use with a differential beacon receiver.

Chapter 12, “Adding a New User Protocol” provides an overview of the user
interface and the UART structure used for serial communication. This chapter also
describes how to implement a user protocol using the code infrastructure provided by
SIRF.

SRFstarlle System Devel opment Kit User’s Guide—Part 1 — Software—May 2002

Related Manuals

Preface

Chapter 13, “GPIO Lines, Throughput and Wait States’ provides general
information on the startup code, including the setting of GPIO functions and how to
change the source of the CPU clock and clock divider.

Appendix A, “Converting UTC Time to GPS Week Number and TOW” explains
how to transform GPS time (normally presented as seconds into week) into UTC time.

Appendix B, “ SIRF Binary Messaging Functions’ describes the various SIRF Binary
I/0O message identifiers including those reserved for custom development. This chapter
also explains the various functions used in SIRF binary 1/0, grouping them according
to type, return value and parameters.

Appendix C, “Module Interface Details’ provides an overview of the various
Module Interface routines and the interface structures that are used in the function
cdls.

Appendix D, “Error Ellipse Functions” demonstrates how to calculate an error
ellipse based on the various DOP values provided by the receiver.

Appendix E, “File Descriptions’ provides a brief description of the source files
included in the SiRFstarlle System Development Kit.

Appendix F, “Acronyms, Abbreviations and Glossary” provides a detailed summary
of relevant terms and phrases.

You can also refer to the following literature for additional information:

® SRFstarlle System Development Kit User’s Guide Part 2— GSP2e Chip
® SRFstarlle System Development Kit User’s Guide Part 3— S2SDK Board
®* SRFstarlle Evaluation Kit User’s Guide

®* ARM ADS User Guide

* ARM ADS Reference Guide

®* ARM Multi-Ice User Guide

® NMEA 0183 Sandard for Interfacing Marine Electronic Devices

® RTCM Recommended Sandard for Differential Navstar GPS Service,
RTCM Special Committee No. 104

XVii

Troubleshooting/Contacting S RF Technical Support
Address:

SiRF Technolog.y Inc.
148 East Brokaw Road
San Jose, CA 95112 U.SA.

SiRF Technical Support:
Phone: +1 (408) 467-0410 (9 am to 5 pm Pacific Standard Time)
Email: support @i rf.com

General enquiries
Phone: +1 (408) 467-0410 (9 am to 5 pm Pacific Standard Time)

Email: gps@i rf.com

Helpful Information When Contacting S RF Technical Support

Receiver Serial Number:

Receiver Software Version:

SiRFdemo Version:

Xviii SRFstarlle System Devel opment Kit User’s Guide—Part 1 — Software—May 2002

SystemDevel opment Kit Overview 1=

The SiRFstarlle Software Development Kit (SDK) is a complete and ready to use tool
suite specifically designed to help users bring their SiRF-based GPS product to the
market as rapidly and efficiently as possible.

Included with the SDK is a GSP2e based large form factor development board
(S2SDK), the latest SiRFstarll GPS software (GSW2) provided in a mix of source and
object code, PC software for testing and evaluation, and other information necessary to
design and build GPS platforms based on the SiRFstarlle chipset.

The DK Development Board

The S2SDK provides a configurable GPS receiver hardware platform for software
development and hardware prototyping. The S2SDK allows the GSW2 software to run
and test the GPS receiver prototype prior to completion of its design. Additionally, the
S2SDK alows for testing of different hardware configurations such as different
processor bus widths, memories, wait-state numbers, and other system configuarations.

Figure1-1 S2SDK Development Board with attached RFBL daughter board.

S2DK Connectionsand Functions

The following section includes information about each of the connections present on
the S2SDK and general board functions.

1-1

ComAand ComB

Two standard RS232 DB9 female communication ports are provided for S2SDK
configuration, data logging, or to upgrade receiver software. Each port can be
configured to operate in NMEA or SiRF protocol, or accept RTCM input data.
However, you may not run the same protocol on multiple ports.

The following table lists the default settings for each of the communication ports.

Par ameter Com A Com B

I nput Protocol SIRF Binary RTCM SC-104
Output Protocol SIRF Binary None

Baud Rate 38400 9600

Parity None None

Stop Bits 1 1

Data Bits 8 8

The following table describes the pin-out configuration for Com A and Com B.

Pin Number & Name Description

Pin 1 [DCD] IConnected to pin 4

Pin 2 [Rx data] Transmit data from the GPS receiver
Pin 3 [Tx data] Receive data to the GPS receiver
Pin 4 [DTR] Connected to pin 1

Pin 5 [GND] IConnected to signal ground

Pin 6 [DSR] Not connected

Pin 7 [RTS] Connected to pin 8

Pin 8 [CTY) Connected to pin 7

Pin 9 [RI] Not connected

Antenna Options

Two antenna connections (female SMA and female BNC) are provided to allow
different combinations of GPS and radiobeacon inputs. The SMA connector connects
to a GPS-only antenna. The BNC connector connects to a combined GPS and beacon
antenna, or a beacon-only antenna. There are three different combinations for GPS and
beacon reception. These are;

® GPS antenna connected to SMA input.
® GPS antenna connected to SMA input and beacon antenna connected to BNC input.

® Combined GPS and beacon antenna connected to the BNC input.

SRFstarlle System Devel opment Kit User’s Guide—Part 1 — Software—May 2002

=
1]

Power

Located on the side of the S2SDK isared LED that indicates when power is being
applied to the board. There is no on/off switch. Required power input is 9V and
typically draws 160 mA.

LED DatalIndicators

Green LEDs on the side of the board indicate whether data is being received or transmitted
through ports A or B. These LEDs are a useful visual indicator when debugging problems or
verifying correct receiver operation.

Default Jumper Settingsfor the 2SDK

The GSW2 Software

System Development Kit Overview

The S2SDK is defaulted to a 16-bit external memory bus and external boot mode. For
more information on the S2SDK and jumper settings see the SRFstarlle System
Developer Kit User’s Guide Part 3 - S2SDK Board. The default jumper settings for the
S2SDK are provided below for convenience.

Note — Jumpers 21 to 25 are tied to data lines that are sampled at start-up to determine
system configuration.

Jumper Shorting Pin Description

21 1-2 DATAQO: Internal Boot (nCS0)
b21 2-3* DATAO: External Boot

22 1-2 DATAL: reserved

22 2-3* DATAL: reserved

J24 1-2 DATAS8: Big Endian

J24 2-3* DATAS: Little Endian
J25:323 2-3:2-3 DATA15,7: 8 bit Bus Mode
25:323 2-3:1-2* DATA15,7: 16 bit Bus Mode
J25:323 1-2:2-3 DATA15,7: 32 bit Bus Mode
J25:323 1-2:1-2 DATA15,7: lllegal Bus Mode

* DenotesaDefault Setting

Note — Three other groups of pins have jumpers provided. JP4 is default to 2-3 and
provides 3V power to the GPS antenna. J29 is default to 2-3 and enables battery back-
up. JP3 must not have any pins connected.

The GSW?2 software is designed to enable a significant amount of user customization.
The SDK is offered as a combination of object files and source files in the C
programming language. Figure 1-2 shows the software architecture and what parts of

1-3

1-4

the software can be modified. The shaded parts of the diagram are provided in object
form only, while the unshaded parts are provided as source files. Figure 1-2 shows a
general overview of the various parts.

Start-Up TR a User Interface R
Module
Interface ul
Event Handler
GPS Core | Ml Events R
SiRF Protocol (1/0) I
SiRF Tasks | MIGet/Set N
”| functions g NMEA Protocol (1/0) I

RTCM Protocol (1

MI Utility rotocal () I

functions
USER1 Protocol (1/0) I

——
. J
\ 4 \ 4 ¢
Scheduler ISR ~ ‘(UART
Routines
Protocol Functions
Memory
A
User Tasks TASKING SRAM Access Physical I/0
Routines, Battery Device

backed RAM

[SiRF Object Code
l: Source Code

Figure1-2 SiRFstarlle SDK Software Architecture

Note — File descriptions and associations based on Figure 1-2 are given in Appendix E,
“File Descriptions.”

The SDK code has been developed using the ARM development environment ADS
(ARM Developers Suite). It is intended that all software development is completed
using ADS and no other compiler option will be supported.

Certain portions of the receiver code are supplied in C programming language source
format, and can be modified for specific user needs. The SiRF reference design uses
the ARM7TDMI microprocessor and SiRF object code is supplied pre-compiled for
this specific processor type. Using an appropriate compiler, you can process and link
the modified source files to the existing set of object files to create a new executable
file. This build process is described in Chapter 4, “ Software Build Process.”

Sandard Variable Types

Since different compilers and CPUs have different sized native variable types, SiRF
has created typedefs which are used to specify variables of an exact size (e.g.,

Ul NT32, Ul NT16, | NT16, etc.). These standard types are defined in STDTYPE. H
for different hardware platforms and different compilers. It is highly recommended that
these typedefs are used.

SRFstarlle System Devel opment Kit User’s Guide—Part 1 — Software—May 2002

=
1]

GPSCoreOverview

The GPS Core module is unavailable for modification and includes GPS navigation
and tracking code. It also contains the Receiver manager that controls the satellite
search strategies and channel assignments. Interaction with the GPS Core is essentially
limited to the start-up code, the Module Interface routines, and elements of the User
Interface Memory structure (Ul _SRAM). Since the code in the GPS Core cannot be
modified, it is not described in this manual, but information may be found in any
general book on GPS tracking and navigation. The start-up code initializes GSP chip
registers and software data structures, including serial interface and memory chip
selects.

Module Interface Overview

The Module Interface module is available as object code and provides an interface
mechanism between the GPS Core and the User Interface Module controlling the I/0O
protocol for communicating with external devices. In general, the User Interface is
driven by events (M _EVENT) that are signaled by the GPS Core (a function call to
U _EVENT() in U _MSG C). When these events are received, the generic Ul
manager code determines the current protocol and calls an appropriate function in that
protocol to handle the event. Inside the current I/O protocol, the event may signal that
system information is supposed to be output. The current protocol can then use the
Module Interface Get commands (M _Get ###) to determine state information and
populate the appropriate output message. When a message is received, and the current
protocol determinesiit is valid, the protocol can use Module Interface Set routines

(M _Set ###) to change the state of the system. The Module Interface events, Get/Set
functions and Utility functions are explained in Appendix C, “Module Interface
Details.”

User Interface Overview

System Development Kit Overview

The User Interface is developed to enable customized message input/output while still
maintaining a generic interface to the GPS Core. The User Interface section is the most
common point for modification of the SDK software. The User Interface is based on a
series of protocols, each of which must have a defined set of functions for controlling
I/0. The User Interface works through a generic interface (Ul _MSG C) and a series of
function redirections based on the current protocol (set by the user, for default
selection see “Basic Compile Switches” on page 4-5). See Chapter 13, “GPIO Lines,
Throughput and Wait States’ for details on the implementation of the User Interface.
As mentioned in “Module Interface Overview” on page 1-5, the User Interface is
mainly driven by Events generated by the GPS Core, but also by interrupts generated
by the UART code for incoming messages.

There are currently four available protocols:
®* SIRF Binary

®* NMEA (ASCII)

* USER1

® RTCM (input only)

1-5

1-6

SIRF Binary and NMEA are currently fully functional and populated with messages
while the USER1 protocol is basically a shell maintained for custom development.
RTCM is available for reception of differential corrections. If new user messages are
desired, SIRF strongly recommends adoption of the SiRF protocol since it is designed
and tested for robustness in the field, and also lends itself to easy extension or
modification of the current message base. This protocol also contains GPS messages
that are essential for gauging the GPS performance of the unit. The SIRF binary
protocol format is described in detail in Appendix B, “ SIRF Binary Messaging
Functions,” Appendix C, “Module Interface Details,” and in the SRFstarlle
Evaluation Kit User’s Guide. Adding a new message in SIRF protocol is covered in
“SiRF Binary” on page 8-7. The NMEA protocol is covered in detail in the SRFstarlle
Evaluation Kit User’s Guide and adding new NMEA messages is covered in “NMEA”
on page 8-17

Adding a new User Protocol can be an involved task depending on the extent of the
differences between the desired user protocol and either SiRF binary or NMEA. See
Chapter 12, “Adding a New User Protocol” for an example of adding a user protocol.

Tasking Overview

The SDK software enables some task-based user code to be implemented through the
use of a scheduler. The scheduler utility is activated at periodic intervals to examine
the task queue and determine if a higher priority task than the currently active one has
been scheduled. If it determines that there is a pending task with a higher priority, it
suspends the current task and activates the higher task. Currently, the scheduler is
activated by the 100 ms interrupt resulting in a 100 ms time slicing capability. The
SiRFstarlle enables a higher rate of time-slicing using different counters, but extreme
care must be exercised since this may detrimentally effect the GPS operation. The
scheduler and adding a new user task is described in Chapter 10, “User Tasks, ASIC
Interrupts, and the Scheduler.” The implementation of the scheduler enables execution
of user tasks during low-power operation when the CPU would normally be in standby
mode.

Warning — GPS is extremely time critical and if a user task interferes with the GPS
operation then tracking and navigation is adversely affected.

Memory Overview

This data storage area is preserved through battery backup during power off and is
integrity checked using a CRC. This storage area is referred to in the code as SRAM
structure, although it need not actually be SRAM, merely non-volatile in the sense that
its contents are kept valid using a battery backup. Data elements stored in this segment
include module state, protocol state (such as what current protocol is selected),
message state (such as what messages are enabled), current Baud rate, etc. This
information is used upon startup to initialize the module. Available space in the
SiRFstarlle battery-backed RAM is extremely limited, see “ROM/RAM
Requirements” on page 3-1 for details. Within the space available, the user may add
variables to this segment for use with the user protocol. For example, this enables the
users to preserve which messages are enabled and maintain that state during power off

SRFstarlle System Devel opment Kit User’s Guide—Part 1 — Software—May 2002

1

periods. Read access is available globally to these status variables, but write access
must be restricted to callsto Ul _Set Ui Sramn() function so that CRC is properly
recalculated after modifying a data element.

UART Overview

Toolkit Software

S RFdemo

System Development Kit Overview

The SiRF reference design uses two serial communication ports, and this portion of
code does full UART management, including all low level transmits and receive
routines. A design overview of UART functions is given in Chapter 12, “Adding a
New User Protocol.” The modification of the UART routines is recommended only for
advanced users and could involve significant development time. An ARM Multi-ICE
debugging tool must be considered for this type of development.

UART functions are provided to put data into the output queue and register callback
functions that are called when a specific message ID is received. Callback functions
may then read the data out of the buffer. To send a message, the code allocates a buffer,
fills the buffer, and sends the buffer to the output queue. All buffer management to
maintain free buffer lists, input queues, output queues, allocate, and free buffers are
maintained by the SiRF supplied source code. Although internal buffers are of a fixed
length, you can support messages that are large enough to span buffers on input and
output messages.

The SiRFstarlle PC Software is comprised of computer-based software utilities that are
used for Evaluation Receiver operation, data logging, and data analysis. All software can
be found on the SiRFstarlle System Development Kit CD and include:

¢ SiRFdemo

® SiRFflash

® SiRFtest

®* SiRFsig

® Additional Utilities

Note — Documentation for SiRFdemo, SiRFsig, and the additional utilities can be
found in the SRFstarlle Evaluation Kit User’s Guide.

SiRFdemo is the Evaluation Receiver configuration and monitoring software. This
software can be used to monitor real-time operation of the Evaluation Receiver, log
data for later analysis, and configure the Evaluation Receiver operation. See the
SRFstarlle Evaluation Kit User’s Guide for more information on the use and
operation of SIRFdemo software.

1-7

1-8

SRFflash

SRFtest

SRFsig

SiRFflash is atool that is provided with the SDK to enable users to download an S
record file into the flash memory of the S2SDK or the Evaluation Receiver. In addition
to downloading an S-record, SiRFflash also provides the user with greater flexibility
when programming flash, as well as provide flash reading ability.

For complete information about SiRFflash operation, see Chapter 5, “Flash
Programming.”

SiRFtest provides the ability to quickly and effectively test whether a production board
is operational. Using SiIRF Binary Protocol information, test criteria can be defined and
used to pass or fail the operation of the GPS board being tested.

The SiRFtest utility is on the SiRFstarlle System Development Kit CD. For complete
information about SiRFtest and its operation, see the SRFstarlle System Development
Kit User’s Guide Part 3 - 2SDK Board.

SiRFsig software enables you to analyze data that is collected in the field. SiRFsig
analysis data includes antenna modeling, satellite tracking abilities, static and
kinematic accuracy results, and time to first fix. See the SRFstarlle Evaluation Kit
User’s Guide for more information on the use and operation of the SiRFsig software.

Additional Utilities

In addition to the main software tools, Table 1-1 lists other useful executables that are
also provided.

Table 1-1 Additional Utilities

Executable Function

Summary Summarizes collected data

Parser Separates collected data into different files of similar data types

Conv Converts between ECEF (Earth Centered Earth Fixed) XYZ coordinates and
WGS84 (World Geodetic Spheroid 84) coordinates.

Fixanal Calculates TTFF (Time to First Fix) statistics

Cksum Calculates checksum values

Datum Converts between different datums

Calcpsr Computes GPS measurement data and ephemeris parameters from raw data

See SRFstarlle Evaluation Kit User’s Guide for more information on the use and
operation of each of the provided executables.

SRFstarlle System Devel opment Kit User’s Guide—Part 1 — Software—May 2002

=
1]

SRFstarlle System Devel opment Kit CD

The CD that is included in the SiRFstarlle System Development Kit contains the
software tools, documentation in .pdf format, data set examples, current version of
Evaluation Receiver software, and the SDK source and object code. The directory
structure of this CD and a description of the contents are provided in Table 1-2.

System Development Kit Overview

Table1-2 CD Directory Structure

Directory

Content

Application Notes

Documentation

PC Software

Receiver Software

Reference Designs

SDK_Code

The collection of applicable Application Notes in PDF format.

PDF format of the SiRFstarlle System Development Kit User’s Guide
and other related documentation.

All PC software provided with the System Development Kit. This
includes SiRFdemo, SiRFsig, SiRFflash, and other useful utilities.
Example data for SiRFsig is also provided.

The receiver software that is currently loaded onto the Evaluation
Receiver and the S2SDK.

Information for the S2AM and S2AR reference designs including
BOM'’s and schematics.

The SDK source and object code of the GSW2 software.

1-10

SRFstarlle System Devel opment Kit User’s Guide—Part 1 — Software—May 2002

Installing the 2SDK

Installation 2

This chapter provides instructions and requirements for installing the Toolkit software
and the S2SDK hardware.

The S2SDK is shipped configured to perform in the same manner as the Evaluation
Receiver shipped with the Evaluation Kit. The Flash memory contains the software and
all jumpers are set for normal GPS operation.

Environment Considerations

The S2SDK board is intended to be used in a development environment and has not
been designed for field operation or testing. Hence, when using the S2SDK, you must
avoid these conditions:

® Exposure to water or moisture
® Extreme temperatures (-40 to +85 degrees C)
® Any vibration

® FElectrostatic environments

Connecting the XSDK

To connect the cables for operation of the S2SDK board:

1. Connect the GPS antenna to the antenna input (SMA connector) on the S2SDK
shown in Figure 2-1.

Note — This is not necessary if you do not require any GPS signal.

2. To receive DGPS corrections from a radiobeacon network, connect a beacon
antenna to the BNC connector as shown in Figure 2-1.

3. Connect one end of the serial cable to the appropriate communications port on your

compulter.

2-1

1]
N

4. Connect the other end of the serial cable to Com port A (P1) on the S2SDK as
shown in Figure 2-1.

5. Use the 110-220V power adapter to apply power to the S2SDK.

Note — The SiIRFdemo software can be used to verify the operation of the S2SDK. For
full instructions on the use of SIRFdemo, please see the SRFstarlle Evaluation Kit
User’s Guide.

Serial Cable

4./ (DGPS in)

Serial Cable

...... @ |

............. ”
\'=

= / Power

Beacon Antenna
2 (Optional)

x//'
>

GPS Antenna

Figure2-1 S2SDK Connections

Installing the Toolkit Software

This section describes how to install the System Development Kit Toolkit software.
To install the toolkit software:
1. Insert the SiRFstarlle System Development Kit CD into your CD-ROM drive.

2. Copy the directory and contents of the PC Sof t war e directory from the SDK
CD to your hard drive.

3. Toinstall SiRFflash, double click on the si r f f | ash204. exe file. The WinZip
Self-Extractor window is displayed as show in Figure 2-2.

2-2 SRFstarlle System Devel opment Kit User’s Guide—Part 1 — Software—May 2002

N
1]

WinZip Self-Extractor - sirfﬂashlﬂ.euéé

Tounzip all files ik zirfflazkl 0.exe ko the specified Unzip
folder prezs the Unzip buttan.

Run Wi
Unzip to folder: un Winsip

fle:SiR FHlash Erawse. . | Close

¥ Owerviite files without prompting

Aot

ddd i}

Help

Figure2-2 WinZip Self-Extractor Window

4. Use the Browse... button to locate the directory you would like SiRFflash installed
in. Otherwise, type in the path name in the Unzip to folder: field.

5. Click on the Unzip button to extract all SiRFflash files to the selected directory.
6. To start SiRFflash, double-click on the Si RFf | ash. exe file.

You may want to create a shortcut on your desktop and use this to start SiRFflash.
7. To start SiRFtest, double-click on the si rft est . exe file.

You may want to create a shortcut on your desktop and use this to start SiRFtest.
8. To start SiRFdemo, double-click on the si r f denp. exe file.

You may want to create a shortcut on your desktop and use this to start SiRFtest.

Note — For information regarding the operation of SiRFsig, please refer to the
SiRFstarlle Evaluation Kit Users Guide.

Installing ARM Development Tools

Installation information for the ADS development environment is provided below as
well as information about copying the required SDK files.

Note — For detailed installation information about the ARM development
environments, refer to the appropriate ARM manual.

The ADSDevelopment Environment

This section describes the steps required to setup an ADS development environment
and the provided SiRF code:

1. Install the ARM ADS development environment.

Installation 2-3

2-4

A typical installation places the ADS software in the directory C. \ Progr am
Fi | es\ ARM ADSv1 2\ BI N, sets the path to the directory C:. \ Pr ogr am

Fi | es\ ARM ADSv1_ 2\ BI N, and sets the environment variables: ARMCONF,
ARMDLL, ARVHOVE, ARMLI B, and ARM NC. If a previous ARM ADS version
exists on your PC, remove al paths to the old ADS software. Refer to the ARM
ADS installation manual for full installation information.

Note — If you have a previous version of the ARM ADS software, it is recommended
that the old version be un-installed before the new version is installed. Please make
sure that the ARM license file is preserved for the upgrade.

Insert the SiRFstarlle System Development Kit CD into the CD-ROM drive.
Examine the contents of this CD and copy the contents of the SDK_CODE\ ADS
directory (including all files and subdirectories) into your development directory
(e.g., “C:\ Si RFDev").

Change the properties of the copied files to Read/Write.

Since these files were copied from a CD, all files and subdirectories are Read Only.
It is necessary to change all files to Read/Write before attempting to begin work.
This can be done using Microsoft Explorer or another file management tool.

The ARM Multi-1CE and Software

This section describes the steps required to setup the ARM Multi-ICE interface unit
and the required software. To setup the Multi-ICE and the software;

1

Install the Multi-1CE software from the ARM Multi-ICE Installation CD.

For more information about the Multi-ICE software installation process see the
ARM Multi-ICE User Guide.

Connect one end of the parallel cable to the parallel port of the host computer and
the other end of the cable to the Multi-ICE interface unit.

Connect one end of the JTAG cable to the JTAG connector on the Multi-ICE
interface unit, and the other end of the cable to the JTAG connector on the S2SDK
development board.

For more information about connecting the Multi-ICE interface unit to the target
hardware platform see the ARM Multi-ICE User Guide.

Connect the power supply to the S2SDK development board.

Verify that the AXD Debugger for the ADS software is configured with the
Mul ti-1CE. dll by starting the AXD Debugger and selecting Options | Configure
Target...

Click ADD and selectthe Mul ti - 1 CE. dI | inthe Multi-ICE installation directory.
For more information about configuring the AXD Debugger see the ARM Multi-ICE
User Guide.

Once the Multi-ICE interface unit is connected and the software is installed on the host
PC correctly, aquick operational verification can be performed. To verify the operation
of the Multi-ICE:

SRFstarlle System Devel opment Kit User’s Guide—Part 1 — Software—May 2002

N
1]

Installation

1. Start the Multi-1CE server application.
2. Reset the S2SDK development board by cycling the power on the board.
3. Auto-configure the Multi-ICE server application by selecting File | Auto-Configure

The target ID is displayed by the Multi-ICE server application. The ID should be
ARM7TDMI.

Note — If the target ID is not shown, it is highly probable that the Multi-ICE server is
not configured properly. The installation procedure should be reviewed. It may be
necessary to uninstall and reinstall the Multi-1CE server software.

2-5

SRFstarlle System Devel opment Kit User’s Guide—Part 1 — Software—May 2002

Available SystemResources 3

For custom development it is important to work within the constraints of the system.
The available resources for the S2SDK board are detailed in this chapter. The GSP2e
contains 1 Mbit of internal EDO DRAM to eliminate the need for external RAM. It is
also designed to allow for 2Kb of internal RAM to be battery-backed during a power
off period along with the Real-Time Clock. For custom boards you can increase the
available memory size by changing the hardware. For information on changing the
clock speeds and the available throughput, see Chapter 13, “GPIO Lines, Throughput
and Wait States.” Memory usage can be determined by examining the ss2_sdk. nap
file generated during the build process.

ROM/RAM Requirements

The following is taken from the ADS build:
®* ROM: 267596 bytes used out of 524,288 bytes (512 Kb)
® RAM: 98476 bytes used out of 131,072 bytes (128 Kb)

Sack Requirements

It is important to realize that there is no stack protection in the software. The current
stack requirement has been estimated at 4,188 bytes.

Adding Elementsto Battery Backed SRAM

There is 2KB of memory in the GSP2e that can be backed up by the external battery.
About half of the space is used by the SiRF application code. The following is a
description of how to add elements to the battery-backed memory structure.

The process can be broken down into three basic steps. These steps are:
1. Verify that there is enough room left in the battery-backed memory space.
2. Add element to the battery backed structure.

3. Add additional code to the battery-backed memory access routine to handle the new
user data.

Each of these steps are explained in more detail in the following sections.

3-1

Check Space Left in Battery-Backed Memory

The first step before implementing any user information is to verify that enough
unused space exists. The proper information can be gleaned from the *. map file that
can be generated using the ARM toolchain. For ADS, the following output is generated
in the listing file:

Executi on Regi on SRAM DATA (Base: 0x60000000, Size: 0x000007ec,
Max: Oxffffffff, ABSOLUTE)

Base Addr Si ze Type Attr |ldx E Section Name
oj ect

0x60000000 0x000007ec Zero RW 208 .bss sramo

The size of the existing SRAM data in this example is 0xO7ec. Since the available
space is 0x1000, the remaining space is 2 bytes.

Add User Element to Battery-Backed Memory Sructure

After verifying that there is enough space left in the battery-backed memory, add the
user element to the “tSRAMUI” structure in “Ul_INC.H.” It is important to add user
elements to the end of the current structure. Two examples of new SRAM data are:

I NT i User Dat a;

USER _DATA sUserData; /* where USER DATA is supplied as well */

Verify that you have received the SRAM.C file in source code. Check your SDK
directory, if you do not have this file, contact SiRF to get some later code.

Add New Codeto SRAM Access Functions

Access to the battery-backed memory information for the purpose of changing it is
handled by the “Ul_SetUiSram()” function in “Ul_SRAM.C". It is important to use
this controlled access for your new user variable because verifies that the CRC is
calculated correctly when you are done. If the CRC is not calculated correctly then the
SRAM s cleared by software after the next power-up. To add code to correctly access
your variable see the following subsections.

Adding an Enumer ated Typefor the User Variable (Data)

There is an enumerated type which is used to identify each element in battery-backed
memory so that the values can be modified. Add another value to the end of the
“Ul_SRAM _ID" enumerated typein “Ul_IF.H.” Use a value such as
“ID_USERSRAM.”

SRFstarlle System Devel opment Kit User’s Guide—Part 1 — Software—May 2002

W
1]

Available System Resources

Adding a Case Satement in Ul_SetUiSram() Function

The final step is to add a case statement to the Ul_SetUiSram() function to handle the
new element in battery-backed memory. The intent is to call the function with the
specific enumerated type value for the variable of interest and to pass in a pointer to
some data and/or an integer value. Note that you can use either the (VOID *) pointer
argument or the UINT16 value to reference the new data for your variable. In any
event, the case statement that add must be as follows:

case | D USERSRAM /* new user value from SRAM ID type */
if (/* validate user data sonehow */)

{
/* For sinple U NT16 val ue, use iVal argunent */
/* SRAM Ul .i UserData = iVal; */
[* ORIILEL */
/* for structure elements, use (VO D *) indata for reference
*/
mencpy((VO D *) SRAM Ul . sUser Dat a, i ndat a,
si zeof (USER_DATA)) ;
}
el se
valid = FALSE;
br eak;

To change the value of your user data, execute the “Ul_SetUiSram()” function call as
follows (in this case using “inData’ as a pointer to the new information):

USER_DATA TenpUser Dat a;
/* Fill TempUserData with [atest information */
U _Set Ui Sran(| D_USERSRAM (void *)&TenpUserData, 0);

3-3

SRFstarlle System Devel opment Kit User’s Guide—Part 1 — Software—May 2002

SoftwareBuild Process 4

The following chapter provides information about creating a software build using the
provided source and object code, and the ARM development environment. Information
about the different software variants and compile switches is also provided.

Software Build Process and Variants

Two different variants of the SiRFstarlle SDK code have been provided to support the
two current development environments:

®* ARM Developer Suite (ADS)

At the time of printing this manual, the SDK code was built using the ADS version
1.2. In-house debugging was accomplished using the ARM Multi-ICE JTAG device.
The SiRFstarlle board comes equipped with a built-in 20-pin connector for the Multi-
ICE to cut-down on development time.

Note — When connecting the Multi-ICE, the red wire on the ribbon cable must be on
the side of the connector that is closest to J33 (S2SDK).

The SDK code directory structure as provided on the SDK CD is shown in Figure 4-1.

4-1

SDK_Code
ADS
I— SDK source files for
ADS
ss2 sdk_data
I— Folder containing
build variants
hwtflash
ADS variant
hwitflash files)
objectcode
ADS variant
hwtflash object files
hwtram
ADS variant hwtram
files -
objectcode
ADS variant hwtram
object files

Figure4-1 The SDK Code Directory Structure

Creating an SDK Build Using ADS

This section describes the process of creating an SDK build using the ARM ADS devel op-
ment environment.

1. In the ADS directory, open the ADS IDE file called ss2_sdk. ntp.

Initially an *. ncp file may not be associated with the Code Warrior IDE
executable called | DE. exe which istypicaly in the directory C: \ Pr ogr am

Fi | es\ ARM ADSvx_x\ Bl N. The ADS uses the Code Warrior IDE as a project
management tool for Windows. This tool automates the routine operations of
managing source files and building your software development projects. If the

* . nep file is aready associated, then the Code Warrior IDE project file opens as
shown in Figure 4-2 (see “Background About the Two ADS Build Variants’ on
page 4-4) otherwise, you must associate this file extension to the | DE. exe.

2. Select the variant you want to build.

For our example, the HM Fl ash variant is selected. Figure 4-2 indicates that the
.s,.cand*. ofileshave ared check mark. This indicates that these files must
be assembled or compiled and/or linked.

SRFstarlle System Devel opment Kit User’s Guide—Part 1 — Software—May 2002

NN
1]

Software Build Process

ifMetrowerks Cod
File Edit Search Project

eYfarrior

Debug Window Help

I m b

A @ ecxBAN A QSR DEB

i @ss2_sdk.mcp

Link Qirder

Targets

| ¥ HutFlash

HuwtF am

ey 3> A

| Data [0

o
B clkadis
B ceection s
B am_irg.c
B amnemar.c
B amnmtest o
B amnreset o
B asciimor o

m® & & &K%

| Code

LD~

NEEEEREE

192 files

Nl

4

Figure4-2 Metrowerks CodeWarrier Start-Up Window used in the ADS Environment

To rebuild the entire project, verify that all SDK source and object files in this list
have a check mark (i.e., select all files and double-click on the white space

underneath the check mark column). Select Project | Make as shown in Figure 4-3 to
build a HwtFlash variant.

hiMetrowerks CodeVWarrior
File Edit Search | Project Debug “Window Help

Add Window
Add Files. ..
Create New Group.. .

g [3

A8 HuwitFlash

i

File:

Check Synkax
Preprocess
Frecompile
Compile
Disassemble

B armstart.:

B clkadis

B csection.
B am_irg.c
B armemror.

Ering Up To Date

Stop Build

B armnmtest
B armreset.

ERRERRRER

132 files

Remove Object Code...
Re-search for files

Reset project entry paths
Synchronize Modification Dates

LD+

HNEEREAEAEEA

Enable Debugger
Run
Debug

Set Defaulk Project
Set Defaulk Target

N

Figure 4-3 Window Displaying How to Make a HwtFlash Variant

4-3

4-4

During the Make process, a pop-up window called Bui | di ng ss2_sdk. ncp
indicates which file is currently being assembled or compiled and linked into the
HwtFlash s-record file. If the build is not successful, an Errors & Warnings window
appears and terminates the build process. If the build is successful, the variant is
created with the Errors & Warnings window indicating no errors and no warnings.
A HwtFlash s-record file called ss2_sdk. s and an *. axf file called

ss2_sdk. axf are created in the SDK ss2_sdk_data\hwtflash subdirectory.

HiiMetrowerks CodeWarrior
File Edit Search Project Debug MWindow Help

Al roxbodadadEer IER

i mss2_sdk.mcp
Link Dirder Targets

| . HutFlash By 3 f
¥ | Fis | Code |
B armstart. s PB4
B chadis -
B ceection s iO18E
B am_irg.c =1
AT C i 156

LD

1]

B ammtest.c Z

B amreset.c 52

B asciimor o 240
192 files

NONEEEME

SRl

Figure 4-4 ADS Errors and Warnings Window

For a HwtRam variant, repeat the above procedure after selecting the HwtRam
variant. If the build is successful, the variant is created without any indication that
the build is successful. A Hwt Ram* . axf file called ss2_sdk. axf iscreated in
the SDK ss2_sdk_dat a\ hwt r amsubdirectory.

Background About the Two ADSBuild Variants

There are two variants: Hwt FI ash and Hwt Ram Hwt Fl ash is used to

create a build to download to flash. HM Ramis code used to download to

RAM for use in conjunction with the Multi-ICE. They are both optimized

for time (i.e., speed). For each variant, the object files are located in their

respective folder: ss2_sdk_dat a\ hwt f | ash\ obj ect code or

ss2_sdk_dat a\ hwt r am obj ect code. Each variant creates an ss2_sdk. axf
file (e.g., in ss2_sdk_dat a\ hwt f | ash), but HM Fl ash, in addition, generates a
Motorola 32-bit Hex s-record from its ss2_sdk. axf . This s-record file,

ss2_sdk. s, isthe file used to download to flash.

SRFstarlle System Devel opment Kit User’s Guide—Part 1 — Software—May 2002

4

Note — The s-record file can be downloaded via Si RFf | ash without the assistance of
FI XSREC. EXE.

Basic Compile Switches

Preprocessor definitions can be set in the ADS environment. Most of the current
preprocessor definitions are generated by the ARM toolchain build process.

The preprocessor definitions that currently exist are either:
® User defined and changeable
® Essential preprocessor definitions that are not to be changed by the user

® Preprocessor definitions that are not used in the code and are not supported by SiRF
or intended for use

The following tables lists each of the preprocessor definitions.

Table4-1 User defined and changeable preprocessor options.

Define Description Comment

TASK_PERIOD=0 Enables the user tasks if the The RTC has a resolution of
value is non-zero. The valueis approximately 8 msec.
the period of the user tasks in

msec.
PPS OFF If defined, disables the PPS Not defined by default.
output.
NMEA If defined, sets the protocol of
serial port A to NMEA.
USER1 if defined, sets the protocol of
serial port A to USERL.
CACHE If defined, allows use of the Defined by default.

cache. If not defined, cache
cannot be used.

SDKTEST_USERTASK |In conjunction with the Intended for running tests to
TASK_PERIOD value, can be understand user tasks only. Not
used to implement the user task |defined by default.

test code.

Software Build Process 4-5

Table 4-2 Essential preprocessor options that are not to be changed.

Define Description Comment

ARM Defines the CPU platform. Must always be defined.

ARM_ADS Identifies that the compiler is Must always be defined in the

ADS. ADS project.

GPS SERIAL Enables serial communications. Must always be defined in the
project if seria
communications is required.

GSP2 Defines that the GSP2e is the Must always be defined.

target.

HW_TRACK Defines HW_TRACKER as Must always be defined.

active.

RELEASE Defines whether the code is a Must always be defined.

release version.

REMOVE_SP If defined, removes the SIRF Not defined by default. It is not

Binary protocol. recommended to define this.

BEACON Define if beaconisto beused. Must always be defined.

If not defined, removes beacon
use ability.

WAAS Defined if WAASistobeused. Must always be defined.

If not define, removes WAAS HALF_MSEC must be defined
use ability. with WAAS.

HALF_MSEC Defined if WAASistobeused. Must always be defined. Must

Enables a 0.5 msec interrupt. be used in conjunction with
WAAS.

DECODE_IONO New message decoding Must always be defined.

scheme.

Table 4-3 Preprocessor options that are not supported and are not to be used.

Define Description Comment

NOPRINTF Removes all debug messages Not defined by default.

from the stream.

ES LOW Enhanced sensitivity software Not defined by default. Future

option. development placehol der.

HOST_0OS Determines whether another Not defined by default. Future

OSis running apart from the development placeholder.
SiRF OS.

SDK_CSlI Using CSI beacon module. Not defined by default. True if

CSI beacon is used.

SRFstarlle System Devel opment Kit User’s Guide—Part 1 — Software—May 2002

Software Build Process

With the ADS flashHwt variant selected, select Edit | HwtFlash Settings... the
following window is displayed as shown in Figure 4-5. From this window select the
Target Settings Panel | Language Settings | Thumb C Compiler | Preprocessor tab.

i4jHwtFlash Settings

2l x|

B Target Settings Panels IE Thurnb C Caonnpiler

= Target -
- Target Settings

={| Target and Sourcel ATPCS | Warnings' Errars | Debug/ Opt Preprocessor |I:c 1 I L4

Ldd I Eeplace Delste

- &AM C Compiler

. Acoess Paths — List of #DEFIME
T ?:;ngg?EFngIHE THITME ﬂ
Eir;n,i',lrges.em”gs r:Tﬂ«HGET:FEATUHE:H.&LFWDHD <l
PPIngs TACK AECIOn O
- Sounce Trees I
- Language Settings
- ARM Azzembler

- ARM C++ Compiler
= Thumb C Compiler
- Thumb C++ Compiler

2 Lirker i~ Equirvalent Command Line
.. FTP Postlinker OTASK_PERIOD=0-D__APCS_INTERWORE -DHALF_MSEC -DTRALCK_MAW ;l
- ARM Linker -DARK -DBEACON -DPAUSE_CLOCK -DhwidaS -DRELEASE -DGPS_SERIAL
-DGSPZ -DCACHE -DaRk_ADS -D_ TARGET_FPU_SOFTFPA -DHW_TRALCK, '+
- &R framELF
=l Editor j
Factory Settings | Rewvert Farnel | Save |

Figure4-5 Setting ADS Compiler Preprocessor #DEFINES

4-7

SRFstarlle System Devel opment Kit User’s Guide—Part 1 — Software—May 2002

Flash Programming 5

The software tool provided with the SiRFstarll SDK for flash programming is
SiRFflash. SiRFflash is a fast in-circuit flash memory programming utility for target
systems based on SiRF Technology’s GSP2 family of chips. It needs a serial line to
communicate with the target system, and supports a variety of flash chips from leading
manufacturers and multiple file formats. You can use it to program and read flash
memory on your GSP2 family based target.

SiRFflash downloads builds for FLASH (either S-record or binary images), while the
hwt r ambuild can be downloaded using the Multi-ICE. Figure 5-1 shows what a
SiRFflash looks like when it is executed.

Downloading Software using S RFflash

To download new software to your SiRF-enabled GPS platform:
1. Verify that the external data bus width is properly selected on your target platform.

On the S2SDK board, the external bus is 16-bit wide if jumper J23 is in position
1-2 and jumper J25 in position 2-3. The external bus is 32-bit wide if jumper J23 is
in position 2-3 and jumper J25 in position 1-2.

On the SIRF Technology Evaluation Kit box, the external bus is 16-bit wide.

2. Change the target platform operating mode to internal boot mode and power cycle
the receiver.

On the S2SDK board, the processor boots in internal boot mode if switch S3 isin
the INT position.

On the SiRFstarlle Evaluation Receiver the processor boots in internal boot mode if
the switch BOOT/DATA isin the BOOT position.

3. Connect serial port A of the target platform to one of the COM ports available on
your PC.

On the S2SDK board, the port A serial connector is marked as P1.

On the SiRFstarlle Evaluation Receiver the port A serial connector is marked as
Com A.

5-1

4, Start the SiRFflash software by double-clicking on the Si RFf | ash. exe file or
the shortcut if one has been created.

The SiRFflash software launches as shown in Figure 5-1.

Bl sirFflash on COM1 i]]
—Input selections —Progress
— Activity selection Wier |
% Program flash " Read flash

Prog |

—Communication settings —Programming options

—Timing (sec)

. {* Erase relevant sectors only
Line I Cion vl
Tatal 00 E o0 g 0.0
" Erase whala chip a I rasel Sl I
Baud rate
[11520 7] " Updats —Flash info
—Flash location settings —Resd seftings ————————————— Manufacturer I

Chip zelect ICSNU vl From address I Model I Chipsl

Chip offzet I i} To addres=s I —Irput file infa
File type I

—File selection
COSIFDeviSDThwiilashiss2 s Lmnes aeiees I
Highest address I
—&ction
Execute | Help About Ext |

Figure5-1 The SiRFflash Software

5. Select the Program flash radio button in the Activity selection box.
6. Select the Line and Baud rate in the Communication settings box.

It is recommended that you use 115200 Baud to minimize the download time if the
target platform is capable of supporting it. At 115200 Baud, SiRFflash can program
more than 10 KB of data per second.

7. Select the Chip select and Chip offset in the Flash location settings box.

These two parameters describe the location of the flash chip (or chipsin 32-bit
external bus case) that are accessed for programming or reading.

The chip select parameter describes which chip select signal (CSNx) on the GSP2
processor is used to access the flash during programming/reading. If you select
CSNO, it corresponds to address 0x40000000, CSN1 to address 0x41000000, CSN2
to address 0x42000000, etc. If the system is rebooted in external boot mode, flash
programmed using CSNO is visible at 0x0 and 0x40000000, CSN1 at 0x1000000
and 0x41000000, etc.

Simpler systems have flash at offset 0 in the CSNO area. In that case, the default
value for Chip offset (CSNO) must be used. In more complex systems there might
be multiple flash chips within certain CSNx areas and in that case a non-zero offset
must be selected if access (programming or reading) to those chips is required.

SRFstarlle System Devel opment Kit User’s Guide—Part 1 — Software—May 2002

S

Additional address space information is in the System Development Kit User’s
Guide Part 2 - GSP2e Chip.

Select the input file by typing the file name into the File selection field or use the
Browse button to select the required file.

The SiRFflash program supports three different input file formats:
» Motorola S record (typical extension ".s")

* Intel Hex (typical extension ".hex")

* Binary (typical extension ".bin")

The SiRFflash program interprets the file contents based on the content itself, not
the file extension. If the first character in the fileis’S), it attempts to interpret the
file contents as Motorola S records, if it isa’’, it attempts to interpret Intel Hex
records; otherwise it considers the file to be Binary.

Select Erase relevant sectors only, Erase chip, or the Update radio button in the
Programming options box.

Programming flash memory with SiRFflash is a two step process. In the first step
locations that must be written are erased; in the second step those locations are
burned (written). The following table provides information about each programming
option.

Selection Description

Erase relevant sectors only The minimum number of sectors are erased which
results in the fastest programming time.

Erase whole chip The whole flash chip is erased which ensures that all
flash bytes that programming does not request have
the value Oxff.

Update The previous contents of |ocations not specified in the

input file are preserved.

10.

11.

Reading Flash Memory

Click on the Execut e button to start the flash programming process.

When flash is programmed, two activities are performed in parallel - data transfer
from the PC to the target and target activities related to flash programming (sector
erase and burning data). The Xfer progress bar displays transfer progress and the
Prog bar displays the programming progress.

When the download has been completed successfully, SiRFflash displays a window
that shows the download terminated without errors. This download process for a
standard SSII build usually takes approximately 30 seconds to complete.

Set the target platform back to the data operating mode.

Cycle power to the target platform after switching S3 back to its original position
on the S2SDK, or switching the boot switch back to data on the Evaluation
Receiver.

To read the flash memory of your SiRF enabled GPS platform:

Flash Programming

5-3

Follow the steps 1 through to 4 as detailed in “Downloading Software using
SiRFflash” on page 5-1.

Select the Read flash radio button in the Activity selection box.
Select the Line and Baud rate in the Communication settings box
Select the Chip select and Chip offset in the Flash location settings box.

These two parameters describe the location of the flash chip (or chipsin 32-bit
external bus case) that are accessed for reading.

Select the output file by typing the file name into the File selection field or use the
Browse button to select the required file.

SiRFflash stores the result of flash reading in a plain Binary file. The value of the
first byte in that file is the contents of the memory location whose address is
calculated by adding the address corresponding to the Chip select chosen and the
Chip offset.

6. Specify the From address and To address in the Read settings box.
Read Setting Description
From address Represents the offset (from the chip base specified in

the flash location box) of the first location that is
saved in the output file.

[To address Represents the offset of the last location that is saved

in the output file.

7. Click on the Execut e button to start the flash reading process.

Once the flash has been read, information is displayed in the Flash info box. This
includes the flash manufacturer, the flash model, the number of chips detected at the
address specified.

Supporting Different Flash Types

5-4

SiRFflash has the ability to program a wide range of different flash types. Flash types
directly supported are listed in the file called CHI PLI ST. TXT. This fileis located in
the SiRFflash installation directory.

Each flash type is described by a line that contains the following information:

Device name
Manufacturer name
Device code (ID)
Manufacturer code (ID)
Capacity and sector map

Driver file name

SRFstarlle System Devel opment Kit User’s Guide—Part 1 — Software—May 2002

S

Flash Programming

If the flash type that you are using is not listed in the CHI PLI ST. TXT file, it still may
be possible that SiRFflash will work with that flash type if you add a line to the
CHI PLI ST. TXT file.

To support additional flash types:

1. Obtain the device code (ID), manufacturer code (ID), capacity, and sector map
information for the intended flash type. This information is typically available from
the flash data sheet.

2. Using atext editor, open the CHI PLI ST. TXT file.

3. Using the same format that is already in the file, add the device name, manufacturer
name, device code, manufacturer code, capacity and sector map information, and
the driver file name at the bottom of the existing list.

The driver file name must be GENERI C. Bl N.
4. Follow the steps detailed in “Downloading Software using SiRFflash” on page 5-1.

5-5

SRFstarlle System Devel opment Kit User’s Guide—Part 1 — Software—May 2002

Devel opment and Debugging 6

For developing and debugging user applications, it is recommended to use the Multi-
ICE JTAG debugger from ARM. This device is used by SiRF for the SiRFstarlle in-
house development. This chapter explains the use of a user version string for
rudimentary version control and other topics related to debugging user specific code.
For debugging purposes, the use of an ARM Multi-ICE, PRINTF style output and LED
activation are described.

Adding aUser Version Sring

Version control in any software development environment cannot be overstressed.
When modifications are made to the SDK code, some form of version number must be
applied to the software variant. Thisis an invaluable aid for providing performance
benchmarks. This section provides a simple method of implementing user version
control. The user version is output with the SiIRF version number. Software versions
are output in the places indicated by the following table.

Protocol File Function When Output
NMEA Ul _NMEA. C OutputStartup Every receiver reset
SiRF binary U _SIRF.C QueueStartup Every receiver reset
SiRF binary U _SIRF. C QueueSw\Version Response to

M D_Pol | SWer si on

Example:

To implement a user version, first add a user version string to USERI NI T. C of the
form:

const char userVersion[]= “user v1.0";

Then add an ext er n statement to user _i f . h to make it globally accessible.

extern const char userVersion[];

6-1

| 6
|
|
The files mentioned in the table above must be modified to output the version string.
Modifications to the files are shown in bold type while file names are shown in bold
and underlined. The complete output string cannot be longer than 20 characters.
U _NMVEA. C
#i ncl ude “user_if.h”
static void QutputStartup (void)
{
int fl;
char szString[50];
M _NAV INIT ni;
int clk;
fl = DebugEnabl ed;
DebugEnabl ed = True
M _Get SwNWersion (szString);
DebugPrintf ("Version %", szString);
DebugPrintf ("Version %", userVersion);
M _GetNavlinit (&ni);
DebugPrintf ("TON 9% 8ld", ni.tinmOWek); /* always show init pos/clk*/
DebugPrintf ("W 9% 4d", ni . weekno) ;
DebugPrintf ("PCS: %8ld %8ld %8ld", ni.posX, ni.posY, ni.posZ);
DebugPrintf ("CLK: 9% 8ld", ni.clkOfset);
DebugPrintf ("CHNL: % 2d\n", ni.chnl Cnt);
#i f ndef OFFLI NE /* show protocol |FF serial debug WAS on */
DebugPrintf ("Baud rate: % System clock: % 3f MHz",
SRAM Ul . NMEAbaud, cl k/ (float) 1e6);
#endi f
if (UC_GetState(UC SDKBoard)) /* we are an SDK board */
DebugPrintf ("HW Type: SDK2");
else if (UC _Cet State(UC S2ARBoard)) /* we are an S2AR board */
DebugPrintf ("HW Type: S2AR');
el se
DebugPrintf ("HW Type: Unknown");
DebugEnabl ed = fl;

SRFstarlle System Devel opment Kit User’s Guide—Part 1 — Software—May 2002

U _SIRF.C

#i nclude “user_if.h”

stati c WERR QueueSwVer si on (voi d)
{
UMBUf Handl e hBuf ;
Ul NT8 Megl d;
Ul NT8 Ver si on[SW VERSI ON_LEN] ;

hBuf = hComm >al | ocBuf fer (hComm Get MsgSize (M D_SwWersion));
if (!hBuf)
{

}

Msgl D = M D_SwVer si on;

M _Get SW/ersion ((char *) &Version);
SEND_| TEM (hBuf, &Msgl D);
SEND_ARRAY(hBuf, Version);

hComm >send (hConm hBuf);

return FAI LURE;

/* output user version string */

hBuf = hConm >al | ocBuf fer (hComm Get MsgSize (M D_SWersion));
if (!hBuf)

{

}

Msgl D = M D_SwVer si on;

menset (Version, \0', sizeof (Version));
strcpy((char *)Version, userVersion);
SEND_| TEM (hBuf, &Msgl d);

SEND_ARRAY(hBuf, Version);

hComm >send (hConmm hBuf);

return FAILURE;

return SUCCESS;

Development and Debugging

Multi-1CE Debugging

6-4

The following sections provides information about using the ARM Multi-ICE interface
unit in the ADS development environments.

ADSand Multi-1CE Debugging

This section describes how to get the ARM Multi-1CE and the ARM Extended Debugger
(AXD) in the ADS development environment up and running with the S2SDK
development board. The following instructions assume that the Multi-ICE interface unit
and software are aready installed. For installation instructions for the Multi-1CE
interface unit and software, see “Installing ARM Development Tools’ on page 2-3.

For the ADS development environment, two build variants are possible - HwtFlash to
create a build to download to flash, and HwtRam to download to RAM. Instructions are
provided for each of these build variants.

Debugging Flash

When debugging from Flash, the code must be loaded separately onto the Flash before
the Multi-ICE is run (to create a Flash build using the HwtFlash variant, see “ Software
Build Process and Variants’ on page 4-1). Once the code is resident in Flash, the Multi-
ICE interface unit can be used to debug the flash build.

To debug a flash build using the ARM Multi-1CE interface unit:

1. If not aready running, launch the Multi-ICE server application by double clicking
onthefileMul ti-1 CE Server. exe or the shortcut if one has been created.

2. Select File | Auto-Configure. This displays the window shown in Figure 6-1 after
successful connection.

i ARM - Multi-ICE Server
File “iew BunControl Coprecion Settings Help

vz 2|

Auto-detected TAP Configuration

TAP D
TOI [¥] ARM7TOMI
[
TDO
o

Resetting Multi-ICE hardware
Resetting Multi-ICE hardware

nputhits [1 [2 4

Figure 6-1 Multi-ICE Server Program After Successful Connection

SRFstarlle System Devel opment Kit User’s Guide—Part 1 — Software—May 2002

6

Development and Debugging

3. Start the ADS Project Manager and run the debugger by selecting Project | Debug.

If you are running multiple debug windows, close al of the debug windows except
one. Verify that the debugger is not running a preloaded image. The debugger is
running an image if you can see a“Running Image” message at the bottom of the
screen.

4. If the debugger is running a preloaded image, select Execute | Stop to stop the
image execution and then select File | Unload Current Image to unload the current

image.
5. Open the Command Window in the debugger by selecting System Views |

Command Line Interface and run thei ni t 16. ads script by typing the following
command line;

obey <source path>\ss2_sdk_data\hwt fl ash\init16. ads

If there are errors, verify that the path to the file is valid. Errors may also be caused
by corrupted or badly initialized board registers. Cycling the power of the S2SDK
development board should correct this problem.

6. Load the image symbols in the debugger by selecting File | Load Debug Symbols.
The Load Debug Symbols dialog is displayed as shown in Figure 6-2.

Load Debug Symbaols llﬁl
Laak jr: Ia HwitFlagh j - =k B

File: name: Iss2 Open I
Files of type: I.t’-‘-XFIrnage (= j Cancel |

Processars

_

Prafiling
|V [~ Enable flat profiling Interval: I'IDEI [microseconds)

Figure6-2 The Load Debug Symbols dialog.
For the S2SDK development board, use the ss2_sdk. axf symbol file. Once the

image is loaded, the files for the project are visible in the Files tab of the main
debugger window.

6-5

1]
o

After loading the symbol file, you may see the following error message in the
Debug Log tab:

DBE Warni ng 00064: The inmage ‘C \pub\...\ss2_sdk.axf’' was
conpiled with the FPU option 2 (-fpu SoftFPA) that does not match
t he debugger node $target _fpu=1 (SoftVFP).

If you see the above warning message, open the Debugger Internals window by
selecting System Views | Debugger Internals and changing the $target_fpu variable
to 2.

7. Set the debugger source path by selecting Options | Source Path.

8. Before execution, verify that the code is not being executed in flash. This can be
done by checking to make sure that there is no serial traffic through the S2SDK
development board serial port. If there is no serial traffic, the serial port lights will
not be blinking.

If this is not the case, it may be necessary to open the Processor Properties dialog
and clear all of the vector catches. This can be done by selecting Options |
Configure Processor and clicking the Clear All button in the Vector Catch group
and the clicking OK.

9. To execute the code, select Execute | Go.
The serial port lights on the S2SDK development board should start blinking.
10. The code execution can be stopped anytime by simply selecting Execute | Stop.

Once stopped, the message window should display the breakpoint in the C file. An
example of thisis shown in Figure 6-3.

176
177 /% Initialize Tracker Interface structure
178 e - - - - - - -
179 TRE_IFIniti):
180
1581 /% Initialize NAV -l
1582 e - - - -- - - ——=y
i 153 I navstarc();
154
185 #ifdef ARM
186 /% directly applicable to ARM dewelopment board configuration +/
187 A% turns on 100ms or lms interrupts +/
188 Initialise_IR0_System (]!
189
130 /% enahle the UART interrupt */
‘IlSl A3IC INTENA |= INT U&ART El\mBLE: _>|;|

Targetl Image Files ICIass I Syztemn Output Monitar

] C:hpubhT estingsnucleus'21 0601 200n4p_if. b ||| FblLeg Debug L°9|
Bl C:hpubhT estingvnuckeus21 0b0T 200n4p_isr.c _ILI Log file:
3

I T Ol

For Help, press F1 llocalhost: TAR O, ARMZTOMI [<Mo Pos:= [WMUl-ICE [ARM7_O [ss2.axf 4

Figure 6-3 Debugger window after a the code has been stopped.

6-6 SRFstarlle System Devel opment Kit User’s Guide—Part 1 — Software—May 2002

6

To confirm that the program is running from Flash memory, after the execution is
stopped, the execution address from the disassembly screen displays OXO0XXXXXX.
This is the Flash memory space. The data space is OXBXXXXXXX.

Debugging RAM

The following instructions are to debug out of RAM on the S2SDK development board.
This is advantageous because it takes less time to load a new build for testing. For
debugging out of Flash, see “Debugging Flash” on page 6-4.

To debug a RAM build using the ARM Multi-ICE interface unit:

1. If not already running, start the Multi-ICE server application by double clicking on
thefileMul ti-1 CE Server. exe or the shortcut if one has been created.

2. Select File | Auto-Configure. This displays the window shown in Figure 6-1 after
successful connection.

i ARM - Multi-ICE Server
File “iew BunControl Coprecion Settings Help

vz 2|

Auto-detected TAP Configuration

TAP D
TOI [¥] ARM7TOMI
[
TDO
o

Resetting Multi-ICE hardware
Resetting Multi-ICE hardware

nputhits [1 [2 4

Figure 6-4 Multi-ICE Server Program After Successful Connection

3. Start the ADS Project Manager and run the debugger by selecting Project | Debug.

If you are running multiple debug windows, close al of the debug windows except
one. Verify that the debugger is not running a preloaded image. The debugger is
running an image if you can see a“Running Image” message at the bottom of the
screen.

4. If the debugger is running a preloaded image, select Execute | Stop to stop the
image execution and then select File | Unload Current Image to unload the current

image.

Development and Debugging 6-7

6-8

5.

Open the Command Window in the debugger by selecting System Views |
Command Line Interface and run thei ni t 16. ads script by typing the following
command line:

obey <source pat h>\ss2_sdk_data\hwtraminit16. ads

6.

If there are errors, verify that the path to the file is valid. Errors may also be caused
by corrupted or badly initialized board registers. Cycling the power of the S2SDK
development board and restarting the ARM tools should correct this problem.

Change the remap register so that it is pointing to RAM instead of Flash. Thisis
done by running the r emap. ads script by typing the following command line:

obey <source pat h>\ss2_sdk_dat a\ hwt ram r emap. ads

7.

Load the image symbols in the debugger by selecting File | Load Debug Symbols.

For the S2SDK development board, use the ss2_sdk. axf symbol file. Once the
image is loaded, the files for the project are visible in the Files tab of the main
debugger window.

After loading the symbol file, you may see the following error message in the
Debug Log tab:

DBE Warni ng 00064: The image ‘ C \pub\...\ss2_sdk.axf’ was
conpiled with the FPU option 2 (-fpu SoftFPA) that does not match
t he debugger node $target _fpu=1 (SoftVFP).

10.

11

12

If you see the above warning message, open the Debugger Internals window by
selecting System Views | Debugger Internals and changing the $target_fpu variable
to 2.

Set the debugger source path by selecting Options | Source Path.

Before execution, verify that the code is not being executed in flash meaning that
the processor is not running. This can be done by checking to make sure that there
is no serial traffic through the S2SDK development board serial port. If there is no
serial traffic, the serial port lights will not be blinking.

If this is not the case, it may be necessary to open the Processor Properties dialog
and clear all of the vector catches. This can be done by selecting Options |
Configure Processor and clicking the Clear All button in the Vector Catch group
and the clicking OK.

Change the PC program counter to 0x0000000. This is done by selecting the PC
Register field in the Registers window and entering 0x0000000.

To execute the code, select Execute | Go.

The serial port lights on the S2SDK development board should start blinking.

. The code execution can be stopped anytime by simply selecting Execute | Stop.

SRFstarlle System Devel opment Kit User’s Guide—Part 1 — Software—May 2002

6

PRINTF Debugging

Development and Debugging

Once stopped, the message window should display the breakpoint in the C file. An
example of thisis shown in Figure 6-3.

1 AXD - [ARMT_D - C:\pub'Testing'nucleus' 2106012000 main.c] —(O x|
@Eile Search Processor Yiews System Views Execute Options Window Help 1= x|

Firs|e| 2| £(08 & | G| | BB FEEED |([EEeEEEE

176

177 /% Initialize Tracker Interface structure

178 EEEEEEE - - - - - - -ty

179 TRE_IFInit():

180

181 /% Initialize NAV —

182 L - - - -- - - R
i 183 I nwstare():

154

155 #ifdef ARM

156 /% directly applicable to ARM development hoard configuration */

187 /% turns on 100ms or lms interrupts */

188 Initialize_IRQ_Gyatem ();

159

130 /% enable the UART interrupt */

IlQl ASIC INTENL |= INT UART EI\IABLE: _ILI
4 4
Targetl Image Files IEIass I Systemn Dutput Monitor

"B CobMTestngnuckus\ 2100 200 th]| | FOILea Debuglog |
-+ B ChpubhT estingnucleust21 0601 200nMp_isr.c _|;I Log file:
13

- ! i o e

For Help, press F1 lacalhost: TAP 0, ARMZTDMI [<Ma Pos> [MU-ICE [ARMZ_0 [ss2.axf 2

Figure 6-5 Debugger window after a the code has been stopped.

To confirm that the program is running from RAM:

1. Confirm that a remap command has been performed. If this has not been done, it is
possible that code is still running from Flash.

2. Open the mai n. c file and add four breakpoints. If the code is running from Flash,
only two breakpoints are allowed. RAM builds allow more than two breakpoints to
be made during execution.

3. Stop the execution and look at the disassembly screen. The execution should be in
the address space range of 0x41000000 to Ox41FFFFFF.

For the ADS development environment, in the “Thumb C Compiler” configuration, the
optimization level must be set to “none” and at |east the “ Enable debug table generation”
and “Include preprocessor symbols’ must be checked. Inthe “ARM Assembler”
configuration, the “ Source Line Debug” and “Keep Symbols’ boxes must be checked. In
the “ARM Linker” configuration, the “Include debug information” box must be checked
with at least “Totals” and “Sizes’ aso checked and a list file must be named.

You can print debug information out of one of the serial ports for display on aterminal
program or for storing to afile. Thisis an easy way to visually inspect data or watch
for software events. The implementation of a debug print statement depends on the
active protocol. You can set one serial port to SIRF binary while the other one is used
for custom development. This has two advantages, the SiRF binary debug print output
can be used and the GPS performance of the board can be monitored using

Si RFdenp. exe.

1]
o>

The debug output for SIRF binary is output on the port where the SiIRF protocol is
currently active. The actual debug message is encapsulated in a SIRF binary transport
layer and has a message ID of 255 (OxFF).

Example:

To implement NMEA protocol on Port 1 and SiRF Binary Protocol on Port 2:

U _SRAM C

void U _SetU Sram(SRAM ID id, void *indata, U NT16 ival)

{
UARTPar ans * pUPar ans;

NMEACFG * nneaCf g;

int i;

BOCOL val i d=TRUE; /*true till proven fal se*/

/*x-fer data from*indata to U _SRAM struct and recalc crc*/
switch(id)

{

case ID_INITIALI ZE:

/* PRINTF(“U _SetU Sram Initializing to default values”); TOO EARLY FOR ANY PRI NTI NG PORTS
NOT YET OPEN */

/* First clear the whole structure to zero */
menset (&SRAM U, 0, sizeof (SRAM Ul));

/* set up default PROTOCOL*/
#if 0
SRAM Ul . Prot ocol A=Ul _PROTO DEFAULT;
SRAM Ul . Pr ot ocol B=Ul _PROTO RTCM
#el se
SRAM Ul . Pr ot ocol A=Ul _PROTO_NMEA;
SRAM Ul . Pr ot ocol B=Ul _PROTO_SI RF;
#endi f

br eak;

NMEA Debug Output

® Print Debug output using NmeaDebugPr i nt f (), defined in Ul _NMEA. C. To use
this function a call outside of Ul _NMEA. C, NmeaDebugPri nt f () must be
declared as an ext er n typein Ul _NMEA. H. The header file must be included by
files that use debug output.

6-10 SRFstarlle System Devel opment Kit User’s Guide—Part 1 — Software—May 2002

6

Debug output is enabled/disabled using the DebugEnabl ed variable. By default,
this value is O (disabled). To enable debug output as default, set this value to 1
when it is declared.

The value of DebugEnabl ed can be set at runtime using the $PSRF105 input
command.

Debug output using this function is preceded by a$ and endswith\ r \ n but has no
checksum.

This output can be used to determine why a NMEA input command was hot
accepted.

S RF Binary Debug Output

Development and Debugging

Print debug output using the umDebugPri nt f () function, defined in
UMANAGER. C. To use this function outside of thisfile, verify that UMANAGER. His
included at the top of the file of interest.

To disable debug output at compile time and verify that it cannot be used at
runtime, use the NOPRI NTF compile define. See “Basic Compile Switches” on

page 4-5.

Debug output is enabled/disabled depending on the value of
unter i al DebugFl ag.

Debug output can be enabled at runtime using NAVSet Ser i al DebugFl ag(1)
which setsunter i al DebugFl ag to 1.

Debug output can be disabled at runtime using NAVSet Ser i al DebugFl ag(0)
which sets untSer i al DebugFl ag to 0.

Debug output can be enabled/disabled at runtime using the Navigation Initialization
Message from Si RFdenp. exe by selecting Action | Initialize Data Source.

The default value for unSer i al DebugFl ag depends on

SRAM Ul . SI RFMsgCnt | . Thisis a member of the Ul_SRAM structure (defined
in Ul_INC.H) in battery-backed SRAM. The default value is controlled in

U _SRAM C by theline SRAM Ul . SI RFMsgCnt|l = SP_DBGOUT. This
enables debug output.

To disable debug output as default, set the above line to
SRAM Ul . SI RFMsgCnt | = 0x00.

When sending log files to SiRF for debugging, always verify that the debug output
is enabled.

6-11

6

SPDK LED Activation

The S2SDK board has five bicolor LEDs, which are connected to 10 GPIO lines of the
GSP2e chip. These LEDs may be used by users for status display and debug. The
GSP2e GPIO signals are 36 to 45 shown in the following table.

GPIO Line |LLED Ports and Bit

36 D4 Green GPIO_PortDirl and GPIO_PortVall Bit 0
37 D8 Red GPIO_PortDirl and GPIO_PortVall Bit 1
38 D8 Green GPIO_PortDirl and GPIO_PortVall Bit 2
39 D7 Red GPIO_PortDir2 and GPIO_PortVal2 Bit 0
40 D7 Green GPIO_PortDir2 and GPIO_PortVal2 Bit 1
41 D6 Red GPIO_PortDir2 and GPIO_PortVal2 Bit 2
42 D6 Green GPIO_PortDir2 and GPIO_PortVal2 Bit 3
43 D5 Red GPIO_PortDir2 and GPIO_PortVal2 Bit 4
a4 D5 Green GPIO_PortDir2 and GPIO_PortVal2 Bit 5
45 D4 Red GPIO_PortDir2 and GPIO_PortVal2 Bit 6

To light aLED, the Direction and Value of the GPIO pin must be set to 1. To clear the
LED, the Direction must be set to 1 and the value set to 0. See the SRFstarlle System
Development Kit User’'s Guide Part 2 - GSP2e Chip for GPIO register memory
locations. The memory locations are included here for convenience.

GPIO_PortDirl is at 0x80010138

GPIO_PortDir2 is at 0x8001013C

GPIO_PortVall is at 0x80010124

GPIO_PortVal2 is at 0x80010128
Example:

To toggle the LED at D5 (red or off) execute the following lines. Do not alter any bits
in the register other than the one(s) you are interested in.

ASI C_GPI O PORTDI R2 | = 0x10;
ASI C_GPI O_PORTVAL2 ~= 0x10;

GPSPerformance Testing

6-12

To examine the GPS performance of the receiver, you must have SiRF Binary Protocol
enabled. This enables you to use the Si RFdenp. exe utility provided with the
Evaluation Kit and the SDK as well as the GPS analysis program Si r f si g. exe.
More importantly, if you have problems with the GPS performance, you can log GPS
information in SiRF Binary format along with the software version number and send
this to SIRF along with a test report. This information can then be examined by our
GPS specialists.

SRFstarlle System Devel opment Kit User’s Guide—Part 1 — Software—May 2002

o>
1]

For more information on Si RFdeno. exe, Si r fsi g. exe and other utility
programs, see SRFstarlle Evaluation Kit User’s Guide.

Using PROCOMM to Send NMEA Messages

Two Procomm Meta-key files are included on the SDK CD, they are NVEA100. KEY
and DGPS. KEY. These files contain miscellaneous NMEA input commands and
provide an example of the NMEA input messages in action. Using these files and
Procomm simplifies sending the input commands detailed in the NMEA input
command section of SRFstarlle Evaluation Kit User’s Guide.

These files are for use with Procomm (versions 2 or 3.0, but may work for older

versions). Select Metakeys | Tools, and then load this file. For Procomm Plus version
2.1, select Tools | Mete Key Editor, then load this file. This enables metakey buttons
(on the bottom of the screen) to send the NMEA message out the comm port as defined
in the metakey editor. The following list shows several of the many buttons possible.

Button Description

Q0_GGA Queries the GGA message.

Debug_on Switches debug output on.

Debug_off Switches debug output off.

Bad checksum Sends a message with an intentionally bad checksum that should be

rejected by the module.

If debug is on, you are able to see the message with the bad
checksum rejected by the module.

If debug is off, the message with a bad checksum is ignored.

Note that keys like [la_ warm were setup to init the module sending the LLA_INIT
message, and contain parameters which are for a specific time/place and must be
modified to correctly initialize your module.

Use the metakey editor to see the contents of each button. Note that the [ALT] key to
the left of the metakeys in Procomm switches among four different sets of metakeys.
Also notice that each string endsin/r/ n./r/ n looks like *M'J when editing the
strings in ASCII mode.

Warning — If you send a sentence without this termination, it may appear that the
message was ignored, but in fact the module is waiting for message termination before
passing the message up to the NMEA input handlersin Ul _NVEA. C.

NMEA Checksum Utility

Development and Debugging

Two optional files are included on the SDK source disk: DOS executable

CKSUM EXE, and the corresponding source file CK. C. The purpose of CKSUM EXE is
to read in afile containing NMEA sentences and calculate the correct NMEA
checksum. This can be used to verify operation of NMEA output sentences, or to
generate a checksum for an NMEA input message.

6-13

Example:

To create atext file containing an NMEA input sentence, for example, an input NMEA
guery message and determine the proper checksum.

J:\>type queryO. txt
$PSRF103, 00, 01, 00, 01*xx

J:\>cksum queryO. t xt

I NPUT FI LE: queryO. t xt

i nli ne: $PSRF103, 00, 01, 00, 01*xx
cksum 25

The correct checksum for this message is 25. You can then use Procomm, or some
similar terminal program to send this message. CK. C can be compiled using any
compiler capable of generating DOS programs, and is simple to modify for your own
unique uses.

Uploading Codeto SRFstarllewithout SRFflash

6-14

You can upload code to the SiRFstarlle with a user-defined utility if the use of
Sirffl ash. exe is not appropriate. This section describes the interaction between
Sirffl ash. exe and the SiRFstarlle board. There are two stages to uploading new
software into Flash. The first is to use the simple internal SiRFstarlle boot code to load
a Flash programming utility into EDO RAM. The second is to use this utility program
in RAM to read the new firmware from the same serial port and write it to Flash. The
following steps define the loading process. You must become familiar with the format
of the Motorola s-record format first.

1. Reset the board in internal boot mode.
2. Wait one second.

3. Usetheinternal boot code to upload a flash loader/serial interface program to EDO
RAM (for example “dl gsp2. bi n”). The internal boot code is serial receive at
38400 Baud. Send an SO followed by four bytes representing the data length (MSB
first), then the data, then another 4 bytes as 0x00,0x00,0x00,0x00. The last four
bytes give the target reset vector (use 0x00000000). The boot loader starts program
execution. The boot loader alows for some limited Baud rate changes.

4. \Wait one or two seconds.

5. With dl gsp2. bi n loaded, start sending s-records at 38400. If the first s-record
received is avalid start line, the flash is erased. The board outputs a SA] CR] [LF]
response after every valid s-record line. If there is an error at any time, the
SiRFstarlle sends back SE<er r or nmessage>[CR] [LF] .

6. Wait a couple seconds and then reset in external boot mode.

SRFstarlle System Devel opment Kit User’s Guide—Part 1 — Software—May 2002

o>
1]

Internal Boot Operation

Development and Debugging

The GSP2e chip contains an internal boot program to load a binary image into RAM
for execution. It is executed when jumper 21 is set to the 1-2 position and the power is
cycled. The boot loader is burnt into the chip and cannot be changed. It is very simple
and implements only seria receive functionality. The boot program assumes a Baud
rate of 38400 and may be adjusted by having the first characters received after reset
being an ASCII ‘'S (0x53) followed by the number O, 1, or 2 for 38400, 57600, 115200
respectively. Following a Baud rate change another ‘'S’ followed by a 0 must be sent at
the new Baud rate following a delay of 1 ms. The internal boot loader runs off of the
GPS clock in the RF section and the Baud rate is not affected by the rate of an external
CPU clock.

The first data sent is 4 bytes of the payload file size. The MSB is sent first. Thisis
immediately followed by the payload data. Finally a 4-byte target reset vector is sent
(MSB first). The program counter is set to the target reset vector and the downloaded
code is executed.

The following is an example of uploading a byte sequence (all at 38400 Baud):
53 00 00 00 00 08 06 00 00 EA FE FF FF EA 00 00 00 00

The following sequence enables start at 38400, and to switch to 57600 Baud after
sending the first two characters:

53 01 53 00 00 00 00 08 06 00 00 EA FE FF FF EA 00 00 00 00

This process is performed automatically by Si RFf | ash. Use the internal boot to load
your own code to run from RAM. An alternate flash loader can be installed using that
scheme if a different load procedure is desired.

6-15

6-16

SRFstarlle System Devel opment Kit User’s Guide—Part 1 — Software—May 2002

Memory

Memory BUSand Components /

The SDK is delivered with the project file for the ADS toolchain. The project contains
all files necessary to build a flash image file loadable into the S2SDK through
sirfflash. exe or aRAM image file that can be loaded into the RAM on the
S2SDK through a Multi-ICE JTAG device. As indicated, both software variants are
contained inside the project files. See “ Software Build Process and Variants” on

page 4-1.

Each toolchain supports two scatter files that define the memory map for each variant.
For the SDK toolchain, the RAM.SCT scatter files is used to define the memory map
for the HwtRam variant and the FLASHSDT.SCT scatter file is used to define the
memory map for the HwtFlash variant. For the ADS toolchain, the RAM.SCT scatter
file is used to define the memory map for the HwtRam variant and the
FLASHADS.SCT scatter file is used to define the memory map for the HwtFlash.

Scatter Loading Files

Both scatter files define an area for SRAM O. This is an uninitialized section that
contains a copy of the battery-backed RAM. There is also an uninitialized section
containing SDRAM O. This region contains the unpacked ephemeris data read and
unpacked out of the battery-backed RAM area. The various memory types and memory
sizes accessible on the S2SDK are described in the SRFstarlle System Devel opment
Kit User’s Guide Part 3 - S2SDK Board.

7-1

HWtRAM

For the ADS toolchain, a typical memory map of a development board using a Multi-
ICE to download to RAM looks like the file RAM SCT:

LOAD_REG ON 0x00000000

{
VECTOR_CODE 0x00000000
{
armstart.o (Init, +FIRST)
}
}
NEXT_REG ON 0x41000000
{
CODE 0x41000000
{
* (+CODE, +CONST)
}
SRAM _DATA 0x60000400
{
sram o (+BSS)
}
SDRAM DATA +0
{
sdram o (+BSS)
}
GPS_DATA +0
{

aut ocor. o (+DATA, +BSS)
coord. o (+DATA, +BSS)

; Commented out due to linker warning. Uncomment it if gl obal
data is added.

corr.o (+DATA, +BSS)
cstd. o (+DATA, +BSS)
dd_par. o (+DATA, +BSS)
decode. o (+DATA, +BSS)
dgpsr x. o (+DATA, +BSS)
gl obal . o (+DATA, +BSS)
intrface. o (+DATA, +BSS)
kflib.o (+DATA, +BSS)
| p_*.0 (+DATA, +BSS)
m _var.o (+DATA, +BSS)
naprep. o (+DATA, +BSS)
rxm o (+DATA, +BSS)

SRFstarlle System Devel opment Kit User’s Guide—Part 1 — Software—May 2002

\l
1]

Memory BUSand Components

startup. o (+DATA, +BSS)
nav_i f.o (+DATA, +BSS)
navi ni t.o (+DATA, +BSS)
ntsc. o (+DATA, +BSS)
ntsl.o (+DATA, +BSS)
nl *. o (+DATA, +BSS)
rm*.o (+DATA, +BSS)
tr_*.o (+DATA, +BSS)
waas. o0 (+DATA, +BSS)
waascorr. o (+DATA, +BSS)

}
DATA + 0
{
* (+DATA, +BSS)
}

In this example, the external RAM is being used for the code and constant data space
at address 0x41000000. The internal EDO RAM is being mapped using the r emap
register down to address 0x00000000 and is also being used at its normal address
range for battery-backed RAM at address 0x60000400. The internal EDO RAM also
contains zero initialized data for the SDRAM_DATA, GPS_DATA and DATA sub-
regions.

If the user decides to add new non-GPS files, then these filenames must not begin with
the following prefixes: Ip_, nl, rm_, or tr_. Using a non-GPS filename with these
prefixes will cause non-GPS variables to be wrongfully placed into the GPS_DATA
sub-region instead of the DATA sub-region. If the user has a new non-GPS related file
that does not begin with the following prefixes: Ip_, nl, rm_, or tr_, there is no need to
update the scatter file because it will be assigned to non-GPS (DATA) data region by
default.

7-3

For the ADS tool-chain, the memory map for a flash build uses the scatter file
FLASHADS.SCT:

LOAD_REG ON 0x00000000

{
CCDE 0x0

{
arnstart.o (Init,+Fl RST)
* (+CODE, +CONST)

}
SRAM DATA 0x60000000
{

sram o (+BSS)
}
SDRAM DATA +0
{

sdram o (+BSS)
}
FAST_CCDE +0
{

rt_sdiv.o(.text)
rt_udiv.o(.text)
f addsub. o(x$f pl $f add)
frul _mul | . o(x$f pl $f nul)
fdiv. o(x$f pl $f di v)
daddsub. o(x$f pl $dadd)
dmul _mul | . o(x$f pl $dmul)
ddi v. o(x$f pl $ddi v)
f nor n2. o(x$f pl $f nor nR)
}
GPS_DATA +0
{
aut ocor. o (+DATA, +BSS)
coord. o (+DATA, +BSS)

; Comment ed out due to linker warning. Uncoment it if gl obal
data i s added.

corr.o (+DATA, +BSS)
cstd. o (+DATA, +BSS)
dd_par. o (+DATA, +BSS)
decode. o (+DATA, +BSS)
dgpsr x. o (+DATA, +BSS)
gl obal . o (+DATA, +BSS)

SRFstarlle System Devel opment Kit User’s Guide—Part 1 — Software—May 2002

\l
1]

intrface. o (+DATA, +BSS)
kflib.o (+DATA, +BSS)
| p_*. 0 (+DATA, +BSS)
m _var.o (+DATA, +BSS)
naprep. o (+DATA, +BSS)
rxm o (+DATA, +BSS)
startup. o (+DATA, +BSS)
nav_i f.o (+DATA, +BSS)
navi ni t.o (+DATA, +BSS)
ntsc. o (+DATA, +BSS)
ntsl.o (+DATA, +BSS)
nl *. o (+DATA, +BSS)
rm*.o (+DATA, +BSS)
tr_*.o (+DATA, +BSS)
waas. o (+DATA, +BSS)
waascorr. o (+DATA, +BSS)

}
DATA + 0
{
* (+DATA, +BSS)
}

In this example, the ADS Flash and the internal S RAM starts at address 0x00000000
and 0x60000000 respectively. The area 0x60000000 to 0x600001000 contains the copy
of the batter-backed RAM. Unlike the SDT Flash region, the ADS Flash region
contains a FAST_CODE sub-region used to store frequently used ARM math library
code. This is done to further reduce processing time. The internal EDO RAM also
contains zero initialized data for the SDRAM_DATA, GPS_DATA and DATA sub-
regions.

If the user decides to add new non-GPS files, then these filenames must not begin with
the following prefixes: Ip_, nl, rm_, or tr_. Using a non-GPS filename with these
prefixes causes non-GPS variables to be wrongfully placed into the GPS_DATA sub-
region instead of the DATA sub-region. If the user has a new non-GPS related file that
does not begin with the following prefixes: Ip_, nl, rm_, or tr_, there is no need to
update the scatter file because it will be assigned to non-GPS (DATA) data region by
default.

Memory Areasinthe GSP2e

Memory BUSand Components

The memory map at start-up is dependent on whether external or internal boot mode is
used. In the case of internal boot mode, the internal ROM of the GSP2e is located at
memory address 0x0000 and the internal boot loader executes. In the case of external
boot mode, Flash (CSNO) is located at address 0x0000. In either case, executing the
r emap function shadows the S RAM at 0x60000000 down to 0x0000. This enables
debugging from RAM as described in “Debugging Flash” on page 6-4. Table 7-1 and
Table 7-2 show the memory map before and after r emap for the internal and external

7-5

boot case. After r enap the memory map is the same for each. The ARM project
manager generates ass2_sdk. map file that contains the breakdown of memory
address allocation.

Note — The Bus Interface Unit (BIU) is broken up by Chip select (CS) with the default

settings having CSO at 0x40000000 (FLASH), CS1 at 0x41000000, CS2 at
0x42000000, etc.

Table7-1 Memory Map for Internal Boot

Before REMAP

After REMAP

Address (31:0)

| nter face Selected

| nter face Selected

FFFF FFFF Internal peripherals Internal peripherals

E000 0000

DFFF FFFF ARM test ARM test

C000 0000

BFFF FFFF Internal RAM, if cacheisdisabled |Internal RAM, if cache is disabled
else it is an undefined area else it is an undefined area
/A000 0000

9FFF FFFF Internal peripherals Internal peripherals

8000 0000

7FFF FFFF SRAM SRAM

6000 0000

S5FFF FFFF Bus interface unit Bus interface unit

4000 0000

3FFF FFFF On-chip boot ROM On-chip boot ROM

2000 0000

1FFF FFFF On-chip boot ROM SRAM Internal

0000 0000

SRFstarlle System Devel opment Kit User’s Guide—Part 1 — Software—May 2002

\l
1]

Memory Map

Table 7-2 Memory Map for External Boot.

Before REMAP

After REMAP

Address (31:0)

| nter face Selected

| nter face Selected

FFFF FFFF Internal peripherals Internal peripherals

E000 0000

DFFF FFFF ARM test ARM test

ICO00 0000

BFFF FFFF Internal RAM, if cacheisdisabled |Internal RAM, if cache is disabled
else it is an undefined area else it is an undefined area
A000 0000

9FFF FFFF Internal peripherals Internal peripherals

8000 0000

7FFF FFFF SRAM EDO DRAM

6000 0000

5FFF FFFF Bus interface unit Bus interface unit

4000 0000

3FFF FFFF On-chip boot ROM On-chip boot ROM

2000 0000

1FFF FFFF Bus interface unit EDO RAM

0000 0000

Remap Function

Memory BUSand Components

The Remap function remaps the SRAM module address space, and it becomes
accessible at address 0x0000_0000 in addition to address 0x6000_0000 (default
location). This facilitates execution of exception handlers from SRAM. The ARM
exception branch vectors are fixed to the bottom of the address space:

0x00000000: Reset

0x00000004: Undefined instruction
0x00000008: Software interrupt
0x0000000C: Abort (prefetch)
0x00000010: Abort (Data)
0x00000014: Reserved
0x00000018: IRQ

0x0000001C: FIQ

7-7

7-8

If GSP2e is configured at power-up into Internal Boot Mode, or if executable code is
loaded from external boot ROM into SRAM, the REMAP function enables GSP2e to
execute exceptions in SRAM.

Remap Procedures
* Internal Boot Mode: The remap procedure is embedded into the on-chip boot code.

® External Boot Mode: After reset, boot code in external memory at CSNO is
executed starting at address 0x0. After application code has been loaded into the
EDO module, a write to address 0x800A007C (the REMAP register), executes the
REMAP function. Then the 128 KByte EDO module becomes accessible at
addresses 0x0000000 and 0x6000000. CPU exceptions generated after the REMAP
function is executed must be handled by the vectors loaded into the EDO.

Memory Map Configuration

Memory Map for the External Boot ROM Configuration

Table 7-3 Memory Map Without Remap

Address(31:0) Selected I nterface
FFFF FFFF ... EO00 0000 (Internal peripherals
DFFF FFFF ... CO00 0000 |ARM Test

BFFF FFFF ... AOOO 0000 [Internal RAM (only if the cache is disabled, otherwise it is an
undefined area)

OFFF FFFF ... 8000 0000 |[Internal peripherals
7FFF FFFF ... 6000 0000 [SRAM?

S5FFF FFFF ... 4000 0000 Bus interface unit
3FFF FFFF ... 2000 0000 [On-chip boot ROM
1FFF FFFF ... 0000 0000 [Bus interface unit?

1. Internal SRAM.
2. External memory.

SRFstarlle System Devel opment Kit User’s Guide—Part 1 — Software—May 2002

\l
1]

Memory BUSand Components

Table 7-4 Memory Map After Remap

Address(31:0) Selected Interface

FFFF FFFF ... EO0O 0000 ([Internal peripherals

DFFF FFFF ... CO00 0000 ARM test

BFFF FFFF ... AOOO 0000 (internal RAM (only if the cache is disabled, otherwise it is an
undefined area)

OFFF FFFF ... 8000 0000 |Internal peripherals

I7/FFF FFFF ... 6000 0000 |[EDO DRAM

S5FFF FFFF ... 4000 0000 [Bus interface unit

3FFF FFFF ... 2000 0000 (On-chip boot ROM

1FFF FFFF ... 0000 0000 [SRAM

Memory Map for the Internal Boot ROM Configuration

Table 7-5 Memory Map Without Remap

Address(31:0) Selected I nterface

FFFF FFFF ... EOOO 0000 |Internal peripherals

DFFF FFFF ... CO00 0000 |ARM test

BFFF FFFF ... AOOO 0000 |Internal RAM (only if the cache is disabled, otherwise its an
undefined area)

OFFF FFFF ... 8000 0000 [Internal peripherals

7/FFF FFFF ... 6000 0000 |[EDO DRAM

S5FFF FFFF ... 4000 0000 Bus interface unit

3FFF FFFF ... 2000 0000 On-chip boot ROM

1FFF FFFF ... 0000 0000 |On-chip boot ROM

Table 7-6 Memory Map After Remap

Address(31:0) Selected I nterface

FFFF FFFF ... EOOO 0000 |[Internal peripherals

DFFF FFFF ... CO00 0000 ARM test

BFFF FFFF ... AO0O 0000 |[Internal RAM (only if the cache is disabled, otherwise its an
undefined area)

OFFF FFFF ... 8000 0000 |Internal peripherals

7/FFF FFFF ... 6000 0000 |[EDO DRAM

S5FFF FFFF ... 4000 0000 Bus interface unit

3FFF FFFF ... 2000 0000 |[EDO DRAM

1FFF FFFF ... 0000 0000 [SRAM

7-10

SRFstarlle System Devel opment Kit User’s Guide—Part 1 — Software—May 2002

| nput/Output Messages 8

The following chapter provides information about input and output messaging that is
supported by the SiRFstarlle architecture:

® Changing the default message settings
® Adding new input and output messages

Changing Default Message Settings

The following section provides information about changing the default settings for the
SiRF Binary Protocol, NMEA, and the USERL1 protocol.

Default Output Protocol

There are three different 1/O message protocols readily available on the SiRFstarlle.
These are SIRF Binary, NMEA (ASCII), and USER1. The default protocol

(Ul _PROTO_DEFAULT) on Port 1 is defined during compile time. This DEFINE
(#define) is set based off the NMEA and USER1 tcc preprocesser definitions.

U | F. Hcontains the DEFINE logic that determines the default protocol for Port 1,
so NMEA and USERL1 tcc preprocessor definitions cannot be defined at the same time.
Only one can be selected. In SiRF's standard build, SIRF Binary is the default protocol
for Port 1 and contains many SiRF defined messages for controlling the receiver and
examining GPS performance. The default protocol for Port 2 is RTCM, which is an
input-only protocol for accepting GPS pseudo range corrections. For more information
on Radio Technical Commission for Marine Services (RTCM) GPS messages, see the
RTCM Recommended Sandard for Differential Navstar GPS Service, Version 2.1.
Currently, the SiRFstarlle supports RTCM messages 1, 2, 3 and 9 as serial input.

You can change the communication protocol on both ports, with the limitation that any
given protocol can only be active on one port. To enable NMEA as the default output
on Port 1, NMEA must be specified as a preprocessor definition as described in “Basic
Compile Switches’ on page 4-5. The USERL1 protocol can also be specified in the
same way, but thisis only provided as a shell for potential user applications and must
be completed by the user first as described in Chapter 12, “Adding a New User
Protocol.” To change the default outputs for both ports requires some code
modification (see the example in “PRINTF Debugging” on page 6-9).

8-1

8-2

Default Baud Rate

In atypical application, Port 1 is used for communicating between the receiver and a
console type device such as a laptop PC. Messages may be input to the receiver and
data logged to the console. Port 2 is normally used to receive RTCM differential
corrections. The default Baud rates for the SiRFstarlle are set to the values given in the
following table.

Protocol Default Baud Rate
SIRF Binary 38400

NMEA 4800

RTCM differential 9600

USER1 9600

SRF Binary Baud Rate

The default Baud rate for SIRF Binary is 38400. To change the Baud rate, the value
must be changed in Ul _I F. H. The parity, number of bits, and stop bit are contained in
this file as well.

Example:

To change the default Baud rate from 4800 to 9600, change the following line:

#def i ne S| RF_BAUD RATE 4800

to:

#def i ne S| RF_BAUD RATE 9600

Note — The CSi BRFM1 has a maximum baud rate of 9600.

NMEA Baud Rate

The default Baud rate for the NMEA protocol is 4800. To change the Baud rate, the
value must be changed in Ul _| F. H. The Baud rate must be able to support the
amount of datathat is requested and the GSV output may be more than one message.

Example:

To change the default Baud rate from 4800 to 9600, change the following line:

#defi ne NMEA_BAUD_RATE 4800

SRFstarlle System Devel opment Kit User’s Guide—Part 1 — Software—May 2002

0o
1]

to:

#defi ne NMEA_BAUD_RATE 9600

RTCM Baud Rate

The default Baud rate for the RTCM differential port is 9600. To change the Baud rate,
the value must be changed in Ul _RTCM H.

Example:

To change the Baud rate from 9600 to 19200, change the following line:

#def i ne RTCM BAUD_RATE 9600

to:

#defi ne RTCM _BAUD_RATE 19200

Default Message Output Rates

Input/Output Messages

You can set the NMEA and SiRF default output rates for individual messages, although
the implementation for each is quite different. The following sections describe both
procedures. Currently, the basic unit for counting output periods is the navigation cycle
(defined asM _PERI OD_CYCLES). Thisis not seconds, although sometimes they can
be equivalent. A cycle count for a given message is decremented every time the event
associated with that message occurs. When this value reaches zero, the message is
output and the cycle count is reset to the value of the output rate. See

SirfQutput () inU _SI RF. Cfor details of this bookkeeping procedure. If
TricklePower is used, the actual output rate is a function of the message output rate
and the TricklePower parameters. See “Effect of TricklePower on Message Rates’ on
page 9-9 for more details.

S RF Binary Output Rates

The default SIRF message handlers and rates are mainly controlled by amdSi rf[],
an array of message structures located in Ul _SI RF. C. Each structure element in the
array corresponds to a different message. Each structure contains the message
identifier, the event on which the message waits, the function handler, the counting
units (currently only cycles), the output rate and some bookkeeping variables. This
structure controls both input and output messages with the input message actions given
last and identified by their association with M _EV_| NPUT (representing an input
event). The majority of default output rate changes can be accomplished by modifying
thisanmdSi rf[] array.

Example:

8-3

1]
oo

To change the output rate of the SIRF navigation message from 1 navigation cycle to
5 navigation cycles, change the following line;

{M D_Measur edNavi gati on,

M _EV_NAV_COVPLETE, QueueMeasNav, M _PERI OD_CYCLES, 1, 1, 1, 0},

to:

{M D_Measur edNavi gati on,

M _EV_NAV_COWPLETE, QueueMeasNav, M _PERI OD _CYCLES, 5,1, 1, 0}, .

8-4

The actual output rate in seconds depends on the rate of (in the case of the example)
the navigation cycle. Typically, this value is one second for continuous operation or
two seconds for the default Trickle power mode. To have a message default to no
output, place a zero in the output rate field.

The second variable used to control SiRF protocol output is SI RFMsgCnt |, a
member of the SRAM structure declared in SRAM C. (also see the tSRAMUI structure
in SRAM_ICD.H). The SRAMstructure is protected during power outages by battery
backup. After aloss of battery back-up, or when first powered on, the SRAM structure
isinitialized by the Ul _Set Ui Sran() function in U _SRAM C. The default value
for SI RFMsgCnt | is set in this function with the following line (see Ul_SetUiSram(
) routine in Ul_SRAM.C for details about ival);

case ID SIRFMSGCNTL:

SRAM Ul . SI RFMsgCnt 1=i val ;
br eak;

SI RFMsgCnt | is used to enable or disable blocks of messages based on the value of
a number of bits (see SRAM_ICD.H for SP_XXX definitions). These blocks are
essentially limited to raw GPS information and debug output. Implementation is best
shown by the function Si RFOpen() in Ul _SI RF. C. When the SIRF messaging
protocol is first initialized, the value of SI RFMsgCnt | is checked and if select bits
are not set high, certain messages are disabled. Turning off a message is accomplished
by calling Di sabl eSi rf Msg() which changes the output rate in the andSi r f []
array to zero for that particular message.

To enable debug output in SIRF Binary (see “Debugging Flash” on page 6-4), the
SP_DBGQOUT bit must be set high. To enable the raw track data, the SP_RAWIRK bit
must be set high, this enables a block of messages in Si RFQpen() . The value of
Sirf MsgCnt | isclosely tied with the use of the Navigation Initialization message.

Example:

SRFstarlle System Devel opment Kit User’s Guide—Part 1 — Software—May 2002

o
1]

Consider defaulting the system to output raw GPS information. This can be
accomplished by setting the SP_ RAWIRK bit to one. In Ul _SRAM C, find the
Ul _Set Ui Sram() function, and remove the #ifndefine and #endif lines::

#i f ndef RELEASE

SRAM Ul . SI RFMsgCnt 1=SP DBGOUT | SP RAWIRK;
#endi f

When SIRF binary protocol isinitialized (in Si RFQpen()), the raw track output
messages are enabled because the SP_RAWIRK bhit is set. This change only takes place
after the battery back-up is invalidated.

NMEA Default Output Rates

Changing the NMEA output rates is quite simple. Each of the seven available NMEA
messages has its own DEFI NE value for the output rate. All of these are located in
U | F. Hand are of the form #DEFI NE DEFAULT_### RATE, where ### is one
of the message types (i.e., GGA). The default values along with the define values for
each message are shown in the following table.

NMEA

M essage

Identifier |Define Name Value
GGA DEFAULT_GGA_RATE 1
GLL DEFAULT_GLL_RATE (0]
GSA DEFAULT GSA_RATE [1
GSV DEFAULT_GSV_RATE 5
RMC DEFAULT_RMC_RATE 1
VTG DEFAULT_VTG_RATE 0
MSS DEFAULT_MSS RATE 5

Currently, the NMEA default settings have the GGA, GSA and RMC messages output
at one second intervals and the GSV message output at five second intervals. If the
BEACON preprocessor definition isincluded, the MSS message is output and provides
some Differential Beacon information. For more information on Differential operation
see Chapter 11, “DGPS Operation.” To change the default NMEA message rates, the
U | F. Hfile must be modified.

Example:

To output the GLL message at 2 second intervals the following line in nnea. h,
change the following line:

#defi ne DEFAULT GLL_RATE 0

Input/Output Messages 8-5

to:

#defi ne DEFAULT_GLL_RATE 2

A zero output rate means that the message is not output at all. The output rate is also
affected by TricklePower operation (see “ Effect of TricklePower on Message Rates’ on
page 9-9). A 4800 Baud rate is not sufficient to output all of the messages at 1 Hz.
Verify that the Baud rate is sufficient to output any required information.

Note — NMEA Compatibility and Fixed Length Fields — NMEA specification allows
for some fields to have variable length. Some third-party software has been developed
which parses NMEA messages but assumes that all fields are a fixed length. This often
occurs when software is written for a specific GPS receiver which uses a fixed number
of significant digits for one of the variable length fields.

The best way is to parse an incoming NMEA message based on comma separation.
The format of the SIRF NMEA messages can be examined using the SIRFDemo
executable provided with the SDK, or by examining the functions used to format the
output messages. These are in Ul _NMEA. C and generally have the form

Qut put ###(VO D) , where ## is the NMEA message identifier (i.e., GGA).

Example:

A GPS receiver offering 5 m level positioning may have a fixed latitude format of
11111, According to the NMEA specification, the first two digits are degrees, the
second two are minutes and the part after the decimal place is variable and equal to
decima minutes. This gives a quantization level of 0.001 minutes, or about 1.9 m at
sealevel. A geodetic level receiver offering cm level positioning might require a
latitude format of IILIIIII, giving a quantization level of 0.000001 minutes, or about
2 mm at sea level. Each length is fixed with respect to the receiver but external
software must be written to accept either form.

Adding New I nput/Output Messages

8-6

This chapter describes implementing a new user-specific message using the SiRF
binary or NMEA protocal. It is recommended to use SiRF binary protocol becauseit is
more compact, has better error checking, and enables the use of all SIRF-defined
messages. This also alows you to examine the GPS performance of the unit using

Si RFdenp. Both input and output messages can be implemented for either protocol.
To add a new user message in a user-defined protocol is significantly more involved
and is explained in Chapter 12, “Adding a New User Protocol.”

There are a number of ways to trigger the output of a message. The two most common
are to wait for a recurring GPS event such as a havigation cycle or to reply to an input
message (polled output). Both of these possibilities are covered in the following
sections.

SRFstarlle System Devel opment Kit User’s Guide—Part 1 — Software—May 2002

0o
1]

Limitationson Message Length

SRF Binary

Input/Output Messages

The default size of the UART buffersis 100 bytes, which includes 8 bytes for the
transport layer. This data information is contained in UARTBUF. C (see DEFI NES
prefixed with UART_). If youwant create a message with a datalength longer
than 92 bytes, you need to span buffers or increase the amount of memory allocated to
the buffers. Allocating more memory to the buffers must be accompanied by an
examination of available memory.

Note — There is no protection against the stack overwriting data space. It might be
necessary to reduce in size or eliminate other buffers to maintain enough RAM for the
stack and program execution.

There is some functionality provided for spanning a long message over a buffer. This
is accomplished using a recursive function that constantly checks the remaining data

length. Usage of this recursive function is demonstrated in Ul _SI RF. C. The function
of interest is Si r f Put () . Some more information on the UART functionsis given in
Chapter 12, “Adding a New User Protocol.”

The SiRF protocol can be extended by adding another SIRF format message with a
unique message 1D or by replacing the data contents of a current SIRF input/output
message. This documentation focuses on adding a completely new SiRF message. This
is the recommended method for extending serial communications with the S2SDK.

To monitor SiRF output messages, you can use a console program. If the console
program is set to display COMM activity in hexadecimal format then the start
(OXA0A?2) and end (0xBOB3) sequences for a SiIRF binary message are easy to find. To
isolate the new message and stop the output of any other messages follow these steps:

1. StubtheSirfError () functionin U _SI RF. C so ho error messages are output.

2. Turn off the debug output by executing the following function call
NAVSet Ser i al DebugFl ag(0) (potentialy at end of Si RFOQpen()).

3. Comment out all other output (NOT input) messages in the andSi RF[] array.

Adding a New SRF Binary Output Message

Output messages can be polled (see “Adding a New SiRF Binary Input Message” on
page 8-10) or output on the occurrence of a system (Module Interface) event as
described in this section. Module Interface events are explained in more detail in
“Module Interface Overview” on page 1-5. At this point, it is useful to glance through
theandSi rf[] tablein Ul _SI RF. C and note the events that different messages
wait on. This section focuses on adding a user message, output every time a
Navigation Complete event (M _EV_NAV_COWPLETE) is signaled by the GPS Core.

Each SIRF binary message has a unique Message ID (MID) to distinguish it from other
messages. The format for SiRF binary messages is given in Appendix B, “ SiRF Binary
Messaging Functions,” and the MID numbers are provided in Appendix C, “Module
Interface Details.” (Note that there are certain ranges of MIDs which are reserved for
user applications.)

8-7

8-8

There are four steps to adding a new SiRF Binary user output message.

1. Define a message output structure.

2. Add an enumerated type MID to uniquely identify the output binary message.
3. Create a function to populate the message and call the output functions.

4. Add the message to the andSi RF[] array and commit it to a trigger event.

Each of these steps are detailed in the following subsections.

Definea Message Output Structure

The new output message must have a defined data structure. As an example, the
structure for the output message can be defined in Ul _I F. Hand have a_ MESSAGE
suffix.

Example:

typedef struct
{
U NT8 M D;
Ul NT8 dat a;
} USERQUT1_MESSAGE;

Note — The size of this message is 2 bytes. You cannot use the si zeof () function
because it is possible that the compiler has padded your structure to align larger data
elements (such as Ul NT32) to aword or long word boundary. The actual length of the
message must be hardcoded into the user message output function. SIRF binary
message lengths are contained in Ul _SI RF. C in the Get MsgSi ze() routine.

Add an Enumerated Type Output M1D

Each SiRF binary message must have a unique identifier to distinguish it from other
input/output SIRF binary messages. For each new user message, a new MID must be
added. It is important that the new MID be placed in the range reserved for the user,
for output messages this is 0x61 (97) to Ox7F (127). See “ SIRF Binary Messaging
Functions” on page B-1 for more information.

SRFstarlle System Devel opment Kit User’s Guide—Part 1 — Software—May 2002

Input/Output Messages

Example:

To add a user output MID valued at 0x64 (100), the SPMessgeld enumerated type must

be modified in PROTOCOL. H. This MID is placed in the range reserved for user

output MIDs.

M D _Zero = 0x00,
M D_Lookl nMessage = M D Zero,
/* MODULE --> DEMO MESSAGES */

M D _Measur eDat a = 0x20,
M D _NavDat a = 0x21,
M D WaasDat a = 0x22,
M D_Tr kConpl ete = 0x23,
M D_Tr kRol | over = 0x24,
M D _Trklnit = 0x25,
M D_Tr kCommand = 0x26,
M D _Tr kReset = 0x27,
M D_Tr kDownl oad = 0x28,
M D_Geodet i cNav = 0x29,
M D_Tr kPPS = Ox2A,
M D_CMD_PARAM = 0x2B,
M D_User Qut put Begi n = 0x61,
M D_User Cut put 1 = 0x64,
M D_User Qut put End = Ox7F,
M D_Navi gationlnitialization = 0x80,

Createa Function to Output the Message

A function must be inserted into Ul _SI RF. C that creates and outputs the new user

message. Typically, data for fields in the new message can be obtained using a
M _Get xxxx() call. Other user system information can also be added.

Example:

Add prototype at beginning of file:

stati c WERR QueueUser1

(void);

1]
oo

Add function in main body:

VERR QueueUser1 (void)

{
/* get buffer handle */
UMBUf Handl e hBuf;
USEROQUT1_MESSAGE sMsg;

hBuf = SirfAl | ocBuf (hConm 2);
if (!hBuf)
{

}

return FAI LURE;

/* use M _GCet###() routines to popul ate nessage */

sMsg. M D = M D_User Qut put 1;
sMsg. data = OxFF;

SEND_| TEM (hBuf, &sMsg. M D);
SEND | TEM (hBuf, &sMsg. data);
SirfSend (hComm hBuf);
return SUCCESS;

Add the Messageto amdSirf[] Array and Commititto a Trigger Event

To output the new user message, a new entry in theandSi r f [] table must be added
in U _SI RF. C. The new entry must include the MID, the event that triggers the
output, the associated output function and some bookkeeping variables. Each element
intheandSi rf[] array has the structure form of Ul _SI RF_MSG _DEF (see

U _I F. H) that isdefinedin Ul _SI RF. C.

Example:
static U _SIRF_MSG DEF andSirf[] =
{
{M D_DGPSSt atus, M _EV_NAV_COVPLETE, QueueDgpsSrc, M _PER OD CYCLES, 1,1, 1, 0}
{MD_UserQutputl, M _EV_NAV_COWPLETE, QueueUser1, M _PERI OD_CYCLES, 1, 1, 1, 0},
{M D_CkToSend, M _EV_LAST_QUT, QueueCkToSend, M _PERI OD _CYCLES, 1, 1, 1, 0},
}

This message is output based on the occurrence of a Navigation Complete event.
Currently, the support for output based on time (M _PERI OD_MSEC) is incomplete
and all messaging output is based on navigation cycles (M _PERI OD_CYCLES).

Adding a New SRF Binary Input Message

Two common uses for a SiIRF binary input message are to change some aspect of the
internal state of the receiver (a set message) or to obtain some form of output message
(a poll message). Messages that are used to poll for output are fairly easy to

8-10 SRFstarlle System Devel opment Kit User’s Guide—Part 1 — Software—May 2002

8

implement. The messages used to set internal variables are set up slightly differently to
enable the modification of the battery-backed RAM and the calculation of the CRC.
When input messages of the set type are received, the system variables are not changed
until the following event is signaled and Si r f Qut put () iscalled.

#define M_EV_INPUT ((M _EVENT) (M _EV_.WAIT_INI TIAL_ACQ M _EV_NAV_COWPLETE))

Input/Output Messages

Using a poll type message can accomplish most tasks (i.e., turning on an S2SDK LED
or setting a nonbattery-backed user variable). An example of the set message type is
included for completeness. When adding a new input message, it is easiest to copy and
modify an existing set of input handlers. Some of the steps for implementing a new
input message are very similar to the steps in “Adding a New SiRF Binary Output
Message” on page 8-7.

To implement a new input message:
1. Define a message input structure

2. Add an enumerated type Message ID (MID) to uniquely identify the input binary
message.

3. Create a Handler function to parse and perform bounds checking on incoming
message. If thisis a HandlePoll type input message then output the desired data. If
thisis a HandleSet type input message, set the andSi r f [] state so a corresponding
set function (see step 5.) is called to alter the system variable after the next
M _EV_I NPUT event.

4. For a HandlePoll message, if a SIRF binary message is desired, create a queue
function to output the message. This may require some of the steps from “Adding a
New SIRF Binary Output Message” on page 8-7

5. For a HandleSet message, generate a set function that alters the system variable.
Add this function to the andSi r f [] table as an input event.

6. Register the input event handler in Si RFOpen() .

There are a number of ways to output information based on the reception of a SIRF
binary message. The easiest is to use a debug output print statement, shown in
“PRINTF Debugging” on page 6-9. The other option is to output a message following
the SIRF binary message protocol. The following example assumes that the code
example for the SIRF binary output message has been completed.

Testing with PROCOMM

Information on the SIRF Binary message structure, including the transport layer, see
Appendix B, “SiRF Binary Messaging Functions’ of this document and in

Appendix C, “SiRF Binary Protocol Specification” in the SRFstarlle Evaluation Kit
User’s Guide. To test the new input message, you can use PROCOMM or another
terminal program that supports hexadecimal 1/0. “Using PROCOMM to Send NMEA
Messages’ on page 6-13 provides some information on using meta keys for
PROCOMM. Loading either the NVEA100. KEY or DGPS. KEY files (included in the
SDK CD) into the meta key window provides some message examples.

8-11

8-12

DefineaMessage | nput Structure

Thisis similar to “Define a Message Output Structure” on page 8-8 except the data
structure is for input. There is no reason that these data structures cannot be identical.
The structure can be defined in Ul _ | F. H.

Example:

typedef struct

{

U NT8 M D;

Ul NT8 dat a;

} USERI N1_MESSAGE;

Note — The size of this message is 2 bytes. You cannot use the si zeof () function
because it is possible that the compiler has padded your structure to align larger data
elements (such as Ul NT32) to aword or long word boundary. The actual length of the
message must be hardcoded into the user function. SIRF binary message lengths are
contained in Ul _SI RF. C.

Add an Enumerated Type I nput Message | D (MID)

Thisis similar to “Add an Enumerated Type Output MID” on page 8-8 except that the
Input MID must be placed in range allocated for Input IDs instead of output IDs. The
modification can still be made in PROTOCOL. H. The range for user input MIDs is
0xB4 (180) to 0xC7 (199). See “SiRF Binary Messaging Functions’ on page B-1 for
more information.

Example:

Add two input I1Ds, one for a set type message and one for a poll type message. A poll
message can be used for most custom applications. To add a user input MID, the

M D_Lookl nMessage must be added in PROTOCCOL. H. These MIDs are placed in
the range reserved for user input MIDs.

#define M D_Zero (0x00)
#define M D_Lookl nMessage M D_Zer o,

/* MODULE --> DEMD MESSAGES */

#define M D_Tail SyncOxB3 0xB3,

#define M D_User | nput Begi n
#define M D_User | nput Pol |
#define M D_User | nput Set
#define M D_User | nput End

0xB4,
OxBE, /* 190 */
OxBF, /* 191 */
0xC7,

#i f def TEST_PACKET
M D Test Packet,
#endi f

SRFstarlle System Devel opment Kit User’s Guide—Part 1 — Software—May 2002

0o
1]

Createa Handler Routineto Parsel nput Message

A handler function must be created that parses the input data. If this is a HandlePoll
type input message, output the data as debug output or as a SIRF binary message. If
thisis a HandleSet type input message, modify theandSi r f [] table so a set function
is called to ater the appropriate system variable after the next MI_EV_INPUT event
occurs. Once the Handlers are created, they must be registered in the SiIRF binary
protocol and tied to the correct MID (see “Register the Input Handler” on page 8-16).
These modifications are made in Ul _SI RF. C.

Poll message example:

/* add header for Poll nessage handler */
static int Handl ePol | User Msg (UvHandl e hMsg, UINT8 Id, U NT8 *pMsg, int Len);

/* local static structure to receive the nessage to */
static USERI N1 _MESSAGE sUserl nPol | ;

/* Placed sonewhere in file along with other |INPUT nessage functions (i.e., Poll...)*/
/* handl er function, outputs desired data, in this case calls */

/* QueueUserl from previous exanple. Note that this function, QueueUserl, should */
/* be renpved fromthe anmdSirf[] table to prevent it from being output */

/* on both every navigation cycle event and every input nessage */

i nt Handl ePol | User Msg (UVHandl e hMsg, U NT8 Id, U NT8 *pMsg, int Len)

{
sUserInPol|.MD = READ_ RAW (pMsg, Ul NT8);
sUser I nPol | . data = READ_RAW (pMsg, Ul NT8);
/* will output if NAVSetSerial Fl ag(1l) */
Printf("Received User Poll Message");
/* call QueueUserl to output Userl nessage (from previous exanple) */
/* renove M D UserQutputl entry fromandSirf[] table */
if (QueueUser1() == SUCCESS)
PushAck (M D_User | nputPoll);
}
el se
{
PushNak (M D_User | nput Pol |);
}
return 1;
}

Input/Output Messages 8-13

1]
o

Set message example:

/* add header for Poll nessage handler */
static int Handl eSet User Msg (UwvHandl e hMsg, U NT8 Id, U NT8 *pMsg, int Len);

/* local static structure to receive the nessage to */
static USERI N1 MESSAGE sUser| nSet;

/* Add nmessage handler. Note that this nodifies the andSirf table so that */
/* the M D UserlnputSet entry will be executed on the next input event */
i nt Handl eSet User Msg (UwHandl e hivsg, U NT8 Id, U NT8 *pMsg, int Len)
{

/* store input nessage info in global structure */

/* for use by ‘set’ function */

sUserlnSet. M D = READ_RAW (pMsg, UI NT8);

sUserl nSet.data = READ RAW (pMsg, Ul NT8);

/* signal the reception of this nmessage */
amdSi rf[findi dx(M D_User | nput Set)]. St at e|] =I NPUT_READY;

return 1,

/* Placed sonewhere in file along with other | NPUT nmessage functions (i.e., Set...

Createa Queue Output Function for a Poll Message

For a Poll type input message, the message handler can output the desired information
directly without waiting for an event. To output debug statements, the debug flag must
be set. Normally, thisis on by default but it can also be enabled using the

NAVSet Ser i al Debug(1) command. Debug output might have been turned off
following the directions in “ SIRF Binary” on page 8-7. The following modifications
are madein Ul _SI RF. C.

Example:

This example makes use of the Queue function implemented in the example given in
“Adding a New SiRF Binary Output Message” on page 8-7. To reuse this function,
including its MID, it is necessary to comment out its entry in theandSi rf [] table.
The line of interest (from “Add the Message to amdSirf[] Array and Commit it to a
Trigger Event” on page 8-10) is:

{M D UserQutputl, M _EV_NAV_COVPLETE, QueueUser1, M _PERI OD_CYCLES, 1, 1, 1, 0},

8-14

Warning — If you do not do this, you will output this message on every Navigation
Complete event and when the input message is received. This becomes difficult to
debug.

SRFstarlle System Devel opment Kit User’s Guide—Part 1 — Software—May 2002

0o
1]

Createa Set Function to Alter a System Variablefor a Set Message

This step is only necessary if asystem variable in battery-backed RAM isto be altered.
Essentially, this mechanism enables the altering of the system variables in a timely
manner. The handler function signals the function to be triggered after the next input
event. The example below has not yet been fully populated but provides an idea of
how to modify a user value that has been added to the battery-backed RAM structure.
Note that there is very limited space left in this portion of RAM. See “ROM/RAM
Requirements” on page 3-1 for details. Modifications are made in Ul _SI RF. C.

Example:
/* put in a function prototype at the start of the file */
/* group this with the other ‘set’ functions */
stati c WERR Set User Msg (void);
/* the function nust be added to the andSirf[] table, */
/* note that this is last entry after M D_ChangeUart Chnl */
static U _SIRF_MSG DEF andSirf[] =
{
{M D_User I nput Set, M _EV_I NPUT, Set User Msg, M _PERI OD_CYCLES, 1, 1, 1, O}
b
/* Add set function in | NPUT section */
/* Note that this function is not fully popul ated yet, but would allow */
/* for the setting of a battery-backed user value (in this case */
/* identified by ID USER in the U _SetU Sram() function */
VERR Set User Msg (Vvoi d)
{
if (!(amdSirf[findidx (MD_UserlnputSet)].State & | NPUT_READY))
{
return FAI LURE;
amdSirf[findidx (MD_UserlnputSet)].State & ~I NPUT_READY;
urmmDebugPri ntf (" Recei ved User Set Message");
if (/*bounds check on input data*/)
{
/*potentially, an elenment of Battery-backed RAM coul d
be nodified here using U _SetU Sran() function.
U _SetU Sran() woul d have to be nodified, check for
battery-backed nmenory space */
/* U _SetU Sram (I D_USER, (void *) &sUserlnSet.data, 0); */
PushAck (M D_Userl nput Set);
return SUCCESS;
}
PushNak (M D_User | nput Set) ;
return FAI LURE;
}

Input/Output Messages 8-15

1]
o

Register thelnput Handler

The input handlers must be registered in the SiIRF binary protocol so that they can be
called when the appropriate MID is received. Modifications are made in Ul _SI RF. C.

Poll example:

/**/

/* Inits appropriate UART objects. Registers UART handl ers. */

/**/

VERR Si RFOpen (UARTs Port, UwHandl e hMsg)

{
unBet Seri al Handl e (Port, hMsg); /* for Serial RxCheck [umanager.c] */
hComm = hMsg;
unRegi st er For Message (hMsg, (Messagel d) M D_Set MsgRat e, Handl eSet MsgControl) ;
unRegi st er For Message (hMsg, (Messageld)M D_POLL_CVD_PARAM Handl ePol | CndPar am ;
unRegi st er For Message (hMsg, (Messagel d)M D User | nput Pol I, Handl ePol | User MsQ) ;

return SUCCESS;

Set example:
/**/
/* Inits appropriate UART objects. Registers UART handl ers. */
/**/
VERR Si RFOpen (UARTs Port, UwHandl e hMsg)
{
unBet Seri al Handl e (Port, hMsg); /* for Serial RxCheck [umanager.c] */
hComm = hMsg;
unRegi st er For Message (hMsg, (Messagel d) M D_Set MsgRat e, Handl eSet MsgControl);
unmRegi st er For Message (hMsg, (Messageld)M D _POLL_CMD PARAM Handl ePol | CndPar am ;
urmRegi st er For Message (hMsg, (Messageld) M D _User | nput Set, Handl eSet User Msg) ;
return SUCCESS;
}

8-16 SRFstarlle System Devel opment Kit User’s Guide—Part 1 — Software—May 2002

0o
1]

NMEA

Input/Output Messages

Adding additional NMEA messages is fairly straightforward. Although NMEA
messages are not as compact as SiRF binary and are more error prone, they are often
easier to implement since the output is ASCII and can be viewed using any console
program. Note that in the NMEA protocol module, debug output is disabled. See
“PRINTF Debugging” on page 6-9 for more details.

Adding a New NMEA Output Message

To add a new NMEA message, it is easiest to copy the implementation of an existing
message. When NUM_Ul _NVEA MSGS changes, you must recompile multiple files.
Any new NMEA messages must be placed at the end of the current NMEA message
list so that communication with Si RFdeno functions correctly.

Note — Each new user NMEA output message adds another byte to the battery-backed
Ul _SRAMstructure. You must verify that there is sufficient room for this operation
(see Chapter 3, “Available System Resources”).

Add a New XXX Message
Example:

Define the new defaults and add an internal ID for indexing purposes.

enum /*in U _IF H/

{
U _NVEA MSG GGA=0,
U _NVEA MSG GLL,
U _NVEA _MSG_GSA,
U _NVEA _MSG _Gsv,
U _NVEA MSG RMC,
U _NVEA MSG VTG,
#i f def BEACON
U _NVEA _MSG_MSS,
#el se
PADG,
#endi f
U _NVEA MSG XXX,
PAD7,
PADS,
PAD9,
NUM_Ul _NMEA_MSGS

#defi ne DEFAULT XXX _RATE 1 /* in U _NVEA H¢/
#def i ne DEFAULT_XXX_CKSUM CHECKSUM ON

8-17

1]
oo

Example:

The default values for the new output message must be storable in battery-backed
RAM. The battery-backed RAM section of memory isinitialized in

Ul _Set U Sram() . The message output rate and the checksum flag are packed into
the same byte. Every added User NMEA output message adds one byte to the

Ul _SRAMstructure and you must verify that there is enough room in battery-backed
RAM.

U _SRAM C

void U _SetU Sram(U _SRAM ID id, void *indata, U NT16 ival)

{
UARTPar ans *pUPar ans;
M _NVEA _CFG *nneaCf g;
int i;
BOCOL val i d=TRUE; /*true till proven fal se*/
/*x-fer data from*indata to U _SRAM struct and recalc crc*/
switch(id)
{
case | D | NI TI ALl ZE:
/* PRINTF("U _SetU Sram Initializing to default values"); TOO EARLY FOR ANY

PRI NTI NG, PORTS NOT YET OPEN */

/* First Clear the whole structure to zero */
menset (&SRAM Ul, 0, sizeof (SRAM Ul));

/* set up default PROTOCOL*/
SRAM Ul . Pr ot ocol A=Ul _PROTO DEFAULT;
SRAM Ul . Pr ot ocol B=Ul _PROTO RTCM

/* set up default conmm parameters for port A AND Protocol s*/
SRAM Ul . NMEAbaud=NVEA_BAUD_RATE;

SRAM Ul . SI RFcomm baud=SI RF_BAUD_RATE;

SRAM Ul . SI RFconm bi t s=SI RF_BI TS;

SRAM Ul . SI RFcomm st op=SI RF_STOP;

SRAM Ul . SI RFcomm parit y=SI RF_PARI TY;

/* USER1 Protocol setup*/

SRAM Ul . USER1comm baud =USER1_BAUD RATE;
SRAM Ul . USER1lcomm bits =USERL_BI TS;
SRAM Ul . USER1comm stop =USER1_STOPR,
SRAM Ul . USER1comm parity=USER1_PARI TY;

8-18 SRFstarlle System Devel opment Kit User’s Guide—Part 1 — Software—May 2002

Example (Continued):

/* set up default conm paraneters for port B*/

SRAM Ul .
SRAM Ul .
SRAM Ul .
SRAM Ul .

/* set
SRAM Ul .

SRAM Ul .
SRAM Ul .
SRAM Ul .
SRAM Ul .
SRAM Ul .
SRAM Ul .
#i f def BEACON
SRAM Ul
SRAM Ul .
#endi f
SRAM Ul .
SRAM Ul .

#i f def RELEASE
SRAM Ul .

DGEPScomm baud

up default NMEA nsg control s*/
nmeaCkSum = (DEFAULT_GGA CKSUM <<
(DEFAULT_GLL_CKSUM

=RTCMDef aul t Par ans.
DGPScomm bits =RTCMDef aul t Par ans.
DGPScomm st op =RTCMDef aul t Par ans.
DGPScomm par i t y=RTCVDef aul t Par ans.

(DEFAULT_GSA_CKSUM
(DEFAULT_GSV_CKSUM
(DEFAULT_RMC_CKSUM
(DEFAULT_VTG_CKSUM

nmeaQut put Rat e[Ul
nrmreaQut put Rat e[Ul
nrmeaQut put Rat e[Ul
nmeaQut put Rat e[Ul
nmeaQut put Rat e[Ul
nmeaQut put Rat e[Ul

. nmeaQut put Rat e[Ul
nmeaCkSum | = DEFAULT_MSS_CKSUM <<

_NVEA_MSG_GGA]
_NVEA_MSG GLL]
_NVEA_MSG_GSA]
_NVEA_MSG_G3V]
_NVEA_MSG_ RV
_NVEA_MSG VTG

_NMEA_MBG_MSS]

baud;

bits;

st op;

parity;

U _NVEA MBG GGA) |

<< U _NMEA MSG _GLL)
<< U _NVMEA _MSG_GSA)
<< U _NVMVEA _MSG _GSY)
<< U _NVEA _NMSG_RMO)
<< U _NVEA _MSG VTG ;

DEFAULT_GGA_RATE;
DEFAULT GLL_RATE;
DEFAULT_GSA RATE;
DEFAULT_GSV_RATE;
DEFAULT_RMC_RATE;
DEFAULT VTG RATE;

= DEFAULT_MBS_RATE;
U _NVEA MSG_MBS;

nmeaCtrl [U _NVEA MSG XXX] = DEFAULT XXX _RATE ;

nmeaCkSum | = DEFAULT_XXX_CKSUM << U _NVEA MBG XXX; ...

SI RFMsgCnt | = SP_DBGOUT |

SP_RAWTRK;

Input/Output Messages

8-19

1]
o

Example:

U _NMVEA. C

char const *const apszNVEAl NUM U _NMEA MSGS] =
{
"GGA",/* GPS Fix Data */
"GLL",/* Geographic position-lat/long */
"GSA",/* GPS DOP and Active Satellites */
"GSV',/* @GPS Satellites in View */
"RMC', /* Recommended mi ni nrum specific gps/transit data*/
"VTG',/* Course Over Ground and Ground Speed */
#i f def BEACON

" MBS" /* Internal beacon data*/
#el se
#endi f
3
static WERR Qut put XXX(voi d)
{
char buf [SENTENCE_LENGTH] ;
/* make calls to get systeminfo, use M _GET###() routines */
/* note that '$ is added to beginning of string el sewhere */
sprintf(buf,"GPXXX, <<< Comma delinmted user info >>>");
AddCheckSum(buf , U _NMEA _MSG_XXX) ;
return SendMsg(buf);
}
/* 111 | MPLEMENTATI ON NOTE: */
/*/* At this tine, each nmessage id in this tablenust be unique and in */
/* proper order. This is because the table is indexed into using a */
/* sinmple meg id as the index. Later, if messagesnust be executed based */
/* on different M_Event... events, changes need to be nade to this file */
/* and ui _sirf.c where SRAM Ul . NVMEACfg[] array is accessed. */

static U _NVEA MSG DEF amdNmea[NUM Ul _NVEA MBGS] =

U _NVEA MSG GGA, M _EV_NAV_COWPLETE, Qutput GGA, M _PERI OD_CYCLES,
U _NVEA MG GLL, M _EV_NAV_COWPLETE, CQutputG.L, M _PERI OD CYCLES,
U _NVEA MSG GSA, M _EV_NAV_COWPLETE, CQutputGSA, M _PERI OD CYCLES,
U _NVEA MSG GSV, M _EV_NAV_COWPLETE, QutputGSV, M _PERI OD_CYCLES,
U _NVEA MSG RMC, M _EV_NAV_COWPLETE, QutputRMC, M _PERI OD_CYCLES,
{ U _NVEA M5G VTG M _EV_NAV_COWPLETE, CQutputVTG M _PERI OD CYCLES,
#i f def BEACON
{ U _NMEA MSG MBS, M _EV_NAV_COWLETE, QutputMsS, M _PERIOD CYCLES, 1, 1, 1, 0}
#el se
{ PADG6, O, NULL, 0, 0O, 0, 0, 0O}
#endi f
{ U _NMEA _MSG_XXX, M _EV_NAV_COWPLETE, OQutputXXX, M _PERIOD CYCLES, 1, 1, 1, 0}
{ PADS, 0, NULL, 0, O, 0, 0, 0O}
{ PAD9, 0, NULL, 0, O, 0O, 0, 0O}

e e e e M e

PP PP PRPP
R R R PP R
PP PP PP

O O O O O o
B el e e e

H

8-20 SRFstarlle System Devel opment Kit User’s Guide—Part 1 — Software—May 2002

0o
1]

Input/Output Messages

Adding a New NMEA Input Message

When adding a new NMEA input message it is easiest to copy an existing NMEA
input message. The available user IDs for NMEA input messages are 200 to 255. An
NMEA input message with ID number 200 has the form:

$PSRF200, < user specified data >...*cksum

To create an input handler, copy the NMEA100 handler. Only proprietary NMEA input
messages are allowed. Information on using PROCOMM to test a new NMEA input
message is provided in “Using PROCOMM to Send NMEA Messages’ on page 6-13.
The checksum for a new input message can be calculated using the CKSUM EXE
utility provided with the Evaluation and SDK packages. See Chapter 9, “SiRFstarlle
Toolkit Software” in the SRFstarlle Evaluation Kit User’s Guide.

8-21

| 8
|
|
Example:
Add a NMEA input message with 1D 200.
U _NMEA. C
static int | nputl00 (UwvHandl e hMsg, U NT8 Msgld, U NT8 *pMsg, int Len);
static int I nputl01 (UwHandl e hMsg, U NT8 Msgld, U NT8 *pMsg, int Len);
static int | nputl02 (UwHandl e hMsg, U NT8 Msgld, U NT8 *pMsg, int Len);
static int | nputl03 (UwHandl e hMsg, U NT8 Msgld, U NT8 *pMsg, int Len);
static int |nputl04 (UwHandl e hMsg, U NT8 Msgld, U NT8 *pMsg, int Len);
static int |nputl05 (UwHandl e hMsg, U NT8 Msgld, U NT8 *pMsg, int Len);
static int |nputl06 (UwHandl e hMsg, U NT8 Msgld, U NT8 *pMsg, int Len);
#if O
static int |nputl07 (UwHandl e hMsg, U NT8 Msgld, U NT8 *pMsg, int Len);
#endi f

{

/*

}

static int |nput200 (UvHandl e hsg, U NT8 Msgld, U NT8 *pMsg, int Len);

VERR NmeaQpen (UARTs Port, UvHandl e hMsg)

/* Register for the I NPUT Messages to be handl ed*/
unRegi st er For Message(hMsg, 100, | nput100);
unRegi st er For Message(hMsg, 101, [|nput101);
unmRegi st er For Message(hMsg, 102, | nput102);
unmRegi st er For Message(hMsg, 103, [nput103);
unRegi st er For Message(hMsg, 104, | nput104);

unRegi st er For Message(hMsg, 105, | nput 105);
urmRegi st er For Message(hMsg, 106, | nput 106);
unmRegi st er For Message(hMsg, 200, | nput 200);

set DebugEnabl ed fl ag*/
DebugEnabl ed = SRAM Ul . SI RFMsgCnt| & SP_DBGNVEA? TRUE : FALSE;

hConmehMsg;
return SUCCESS;

static int | nput200 (UvHandl e hMsg, U NT8, Msgld, U NT8 *pMsg, int MsglLen)

/* add user code */
static int |nput200 (UvHandl e hMsg, U NT8, Msgld, U NT8 *pMsg, int MsglLen)
{
i nt Scanf;
Char buf[20];
Scanf = sscanf ((Char*) pMsg, “%", buf);
if ((!Scanf) || (Scanf==ECF))
{
DebugPrintf (“Not Received User Message”);
Return O;
DebugPrintf (“Recei ved User Message”);

return 1; /* one nsg received */
/* end NVEA ID: 200 */

8-22

SRFstarlle System Devel opment Kit User’s Guide—Part 1 — Software—May 2002

TricklePower

Low Power Operation 9

The low-power receiver operation is afunction that has been provided since the release
of 2.0. There are two modes of low-power operation:; TricklePower (TP) and Push-to-
Fix (PTF). In TricklePower mode, the power to the SIRF chipset is cycled periodically,
so that it operates only a fraction of the time. In Push-to-Fix mode, the receiver is
generally off, but turns on frequently enough to collect ephemeris and maintain real-
time clock calibration so that, upon user request, a position fix can be provided quickly
after power-up. In both of the low power modes, the GPS hardware is controlled by
GPIO4 and GPI0O8 signals which provide an initial power up default condition, and are
controlled thereafter by the operation of a hardware Finite State Machine (FSM) within
the GSP2e and the GSW2 software.

Thisis a power-saving mode during which GPS is operational, and a position is output
at a user-specified rate. During inactive periods, the various SiRF hardware
components are either powered down or unclocked to reduce power consumption to
very low levels.

There are two forms of TricklePower (TP) supported: external clock (E clock or
ECLK) TP and GPS clock (GPSCLK) TP with ECLK TP being the lowest power
solution and GPSCLK TP resulting in the lowest component solution. The main
difference between ECLK TP and GPSCLK TP is that the ECLK implementation
utilizes both the GPS clock and E clock, while the GPSCLK TP implementation
utilizes only the GPS clock. There are schematic difference in the standard reference
design which dictate which load options are to be used depending on the type of TP
functionality desired.

There are three TricklePower states:
® Measurement (Tracking State)

® Navigation Computation (CPU)
® [nactive (TrickleState)

9-1

9-2

ECLK TricklePower

Tracking State - The tracking state is entered immediately after a hardware reset or
a power up. In the tracking state, GPIO4 (connected to RF Regulator) and GPIO8
(connected to ECLK NAND Gate) are defaulted to logic high at power up. During the
Measurement state, which can be as short as 200 msec, al SiRF hardware is powered
On. The GPSCLK is used to clock the GPS tracking engine and to run the ARM7
CPU core elements. It is necessary to use the GPS clock to drive the CPU during
periods when the RF section is on because the clock source for the CPU and the GPS
DSP must be synchronous when the software is accessing registers on the GPS DSP
side of the ASIC. The GPS satellite signals are acquired and tracked, and
measurements are taken. Once the measurement interval (referred to hereafter as
OnPeriod) has elapsed, the SiIRF RF front end can be powered down, and the CPU
state begins.

CPU State - During the transition to the CPU State, the control signal GPIO4 is

switched from high to low, which causes the RF regulator to enter the shutdown mode.
This effectively disables the RF front end including the GPSCLK source being output
by the RF device. Immediately prior to this transition, CPU clock source is switched
from the GPSCLK to the ECLK to maintain continuity of the clock. During the CPU
state, position, velocity and time are computed based on the measurements taken

during the tracking state. Other background tasks are also executed during this state.

Trickle State - During the transition to the Trickle State, the control signal GPIO8 is

switched from high to low, which resultsin the ECLK NAND gate being switched off.

Once navigation completes, the hardware reverts to the Trickle state during which time
the ARM processor can be optionally put into asleep state. This option is provided to
allow the system to continue to communicate via the UARTS or to execute user tasks.
A LPSetProcessorSleepAllowed() function is provided to force the processor to stay on
at all times so the user may make use of the processor while GPS isidle.

In the situation where you want to keep the UARTS functioning at all times, you can
set the UC_StopEClock value to FALSE in the Ul_CONFIG.C file. This has the effect
of leaving the ECLK powered during the TrickleState. The ARM s still in a wait for
interrupt mode but the UARTSs are active. This draws considerably more current and is
only useful if you want to maintain constant communication

At the end of the Trickle State the real-time clock (RTC) is programmed with the time
value that is equal to the user programmed interval minus the On time. The total time
between subsequent TricklePower cycles is user-specified and is referred to as the
TricklePowerlnterval. The RTC is a count down timer. At the end of the countdown,
the RTC generates a wake-up interrupt signal to the FSM and software, which causes
the cycle to start over (i.e., the next Measurement state begins). The FSM toggles the
GPIO8 line from low to high, which starts the CPU processing via ECLK, and the
GPIO4 line is toggled from low to high via software control.

Note: The voltage to the GSP2e device is never removed. The lowest power state
(trickle state) results from the fact that the internal clock tree driver internal to the
GSP2e ASIC is switched Off to various sections of the device.

SRFstarlle System Devel opment Kit User’s Guide—Part 1 — Software—May 2002

9

Figure 9-1 shows the TricklePower states over a period of two navigation cycles.

. Track- Track-
Tracking ing ing
State State State
CPU State CPU State
Trickle State Trickle State
— Ttrack Tcpu Ttrickle Ttrack Tcpu Ttrickle
Tceycle [s] Tcycle [s]

Figure9-1 Diagram for ECLK TricklePower Showing the Various States and Approximate
Current Consumption.

GPSCLK TricklePower

Tracking State - The tracking state is entered immediately after a hardware reset or
a power up. In the tracking state, GPIO8 (connected to RF Regulator) and GPIO4
(connected to PWRCTL pin of the RF section) are defaulted to logic high at power up.
In this configuration, the RF front end is fully powered On and provides the same
functionality as ECLK TR,

CPU State - During the transition to the CPU State, the control signal GPIO4 is
switched from high to low, which causes the RF section to enter the what is referred to
as the "clock only" mode. This effectively disables the RF front from passing signals,
but allows the RF section to continue to output the GPSCLK clock source to the
GSP2e device.

Trickle State - During the transition to the Trickle State, the control signal GPIO8 is
switched from high to low, which results in the RF Regulator to enter the shutdown
mode. With no clock source available, asin ECLK TP, no UART communication or
any other type of CPU functionality is supported during this state.

Note — In GPSCLK TR, the average current consumption will be slightly higher as
compared to ECLK TP for the same setting.

The following tables summarizes the three TricklePower states in terms of the various
system hardware elements and their operational states. The first column lists the
hardware elements involved. All of these elements, except the RF section, are modules
within the GSP2e.

Low Power Operation 9-3

Table9-1 Summary of Clock Sources for ECLK TricklePower States

TricklePower Sate
Clock
SIRF Hardware Source Tracking CPU Trickle
GRF2i GPS Xtal On Off
GSP2e SSTE GPSCLK On Clock Clock
Disabled Disabled
GSP I/0 UARTS (ECLK) On On On
(ECLK)or
Clock
Disabled
GSP ARM Processor GPSCLK or On On (ECLK) On
(ECLK) (GPSCLK) (ECLK)or
Clock
Disabled
GSP Real-Time RTC Xtal On On On
Clock
Table 9-2 Summary of Clock Sources for GPSCLK TricklePower States
SIRF Hardware Clock Source TricklePower State
Tracking CPU Trickle
GRF2i GPS Xtal On On Off
(RF sectionin
Clock Only
Mode)
GSP2e SSTE GPSCLK On Clock Disabled | Clock
Disabled
GSPI/OUARTS GPSCLK On On Clock
Disabled
GSP ARM Processor GPSCLK On On Clock
Disabled
GSP Real-Time Clock RTC Xta On On On

Enabling/Disabling TricklePower

You may enable or disable TricklePower operation through a call to
M _Set LowPower (). The prototype for this function is specifiedinm _if. h
(which must be included as header file) and is as follows:

VERR M _Set LowPower

(M _LP_PARAM *pDat a) ;

SRFstarlle System Devel opment Kit User’s Guide—Part 1 — Software—May 2002

©
1]

where:

typedef struct

{
| NT16 PushToFi x;
| NT32 OnTi ne; /* in mlliseconds */
| NT32 LPInterval; /* in mlliseconds */

BOOL Pw Cycl i ngEnabl ed;
} M _LP_PARAM

® PushToFi x
0--> disable Push-to-Fix,
1 --> enable Push-to-Fix

® OnTine
Must be a multiple of 100. OnTi me must be greater than or equal to 200 ms and
less than or equal to 900ms. Must be set when setting TricklePower parameters, not
needed when enabling Push-to-Fix.

® LPInterval
Must be a multiple of 1000 (i.e., 1 second). Must be set when setting TricklePower
parameters, not needed when enabling Push-to-Fix.

® Pwr CyclingEnabl ed
TRUE --> enable TricklePower
FALSE --> disable TricklePower

Low Power Operation 9-5

9-6

Note — VERR is a SIRF type defined in st dt ype. h that uses the values SUCCESS or
FAI LURE. The function returns FAI LURE if TricklePower is not supported by the
board on which the software is running. M _Set LowPower also returns FAI LURE if
the OnTime is <200 ms or if the OnTime > 600ms and the LPInterval < 2s, or if the
OnTime > 900 ms. If LPInterval <= OnTime (invalid TricklePower settings), then
TricklePower is not enabled (enables Continuous Power) and Maximum Acquisition
Time and Maximum Off Time are set to default values.

To deactivate TricklePower, the parameter Pwr Cycl i ngEnabl ed must be set to
FALSE. If Pwr Cycl i ngEnabl ed is FALSE, the parameters OnTi e and
LPI nt erval areignored.

To activate TricklePower, set Pwr Cycl i ngEnabl ed to TRUE, and set OnTi me and
LPI nt er val to the desired OnPeriod and TricklePowerlnterval, respectively. Both
quantities must be integer values with units of milliseconds. The PushToFi x
parameter must be set to 0, (i.e., Push-to-Fix disabled, when TricklePower is TRUE).

If invalid parameters are supplied, they are ignored, and TricklePower operation is
disabled. When enabling/disabling TricklePower, the User task settings can be
obtained by a call to Ul _Get User TaskPar ans() which returns

User TasksEnabl ed and User Taskl nt er val Ms. To set these values and enable
user tasks, see Chapter 10, “User Tasks, ASIC Interrupts, and the Scheduler.” User
tasks can be enabled or disabled independent of TricklePower or Push-to-Fix. Unless
the user has supplied a user task, the parameter User TasksEnabl ed must be set to
FALSE. In this case, the User Taskl nt er val Ms parameter is ignored.

Example:

This example sets TricklePower as default operation with a 300 ms on period and a
2-second TricklePower interval. This code modification is put in the Ul _MSG. Cfilein
the generic Ul _Open() function call so it is enabled regardless of the I/O protocol
that is going to be activated.

SRFstarlle System Devel opment Kit User’s Guide—Part 1 — Software—May 2002

u_ MG C

VERR Ul _Open (void)
{
VEERR Ret ;
M _LP_PARAM User LowPwr ;
struct User Paranttruct User TaskPar ans;
BOOL User TasksEnabl ed;
int User Taskl nt er val Me;

/* range check SRAM Ul . Protocol A/B; set to default if exceeded */
if ((SRAM Ul . Protocol A >= U _PROTO MAX) ||
(SRAM Ul . Prot ocol B >= U _PROTO MAX) ||
(!Val i dat eSRamNmeaCf g (SRAM Ul . NVEAbaud)) | |
(SRAM Ul . crc !'= Conpl et eCRC16 ((UI NT8 *) &SRAM Ul . Protocol A, /* 1st el ement*/
sizeof (SRAM U) - sizeof (SRAM U .crc))))

U _SetU Sram (I D_I NI TI ALI ZE, 0, 0);

/* Get current User Task information */

U _Get User TaskPar ans (&User TasksEnabl ed, &User Taskl nt erval Ms);
User TaskPar ans. User TasksEnabl ed = User TasksEnabl ed;

User TaskPar ans. User Taskl nt erval Ms = User Taskl nt er val MVs;

User LowPwr . PushToFi x = 0;
User LowPw . OnTi ne = 300;
User LowPw . LPI nterval = 2000;

User LowPwr . Pwr Cycl i ngEnabl ed = TRUE;

/* Note we do not check return val ue */

M _Set LowPower (&User LowPwr) ;

/* Note we have not nodified the user task paranms */
U _Set User Paraneters (&User TaskPar ans) ;

return Ret;

Low Power Operation

9-7

| 9
|
|
Example:
This example uses the Poll SW version input message handler to adjust the
TricklePower parameters. This code would never be implemented in practice, it isa
demonstration only. This is actually a good debugging trick. If you want to adjust a
parameter in the code, put this code in the Poll SW version input message handler and
then use Si RFdenp. exe to execute it by selecting Poll | SW Version. In later
versions of Si RFdenn. exe, you must disable the auto-detection by selecting Setup |
Receiver S/W... to get this debug method to work. This example alows for a four stage
change in TricklePower mode, ending with continuous power.
U SIRF.C
static int UserDebugCount = O;
static M _LP_PARAM User LowPwr ;
static int Handl ePol | SwWer si on (UvHandl e hisg, U NT8 Msgld, U NT8 *pMsg, int Msg Len)
{
pMsg += sizeof (U NT8);/*skip Mgl d*/
pMsg += sizeof (UINT8);/*skip Crl*/
if (QueueSwVersion() == SUCCESS)
{
PushAck (M D_Pol | SWer si on) ;
}
el se
{
PushNak (M D_Pol | SWer si on) ;
}
i f (UserDebugCount ++ > 3)
User DebugCount = 0;
9-8 SRFstarlle System Devel opment Kit User's Guide—Part 1 — Software—May 2002

©
1]

Example (Continued):

switch (User DebugCount)

{
/* 300 ns on tine, 1 second TP Interval */
case 0O:
User LowPwr . PushToFi x = 0;
User LowPwr . OnTi e = 300;
User LowPw . LPI nterval = 1000;
User LowPwr . Pwr Cycl i ngEnabl ed = TRUE;
br eak;
/* 500 nms on tinme, 2 second TP Interval */
case 1 :
User LowPwr . PushToFi x = 0;
User LowPwr . OnTi e = 500;
User LowPw . LPI nterval = 2000;
User LowPwr . Pwr Cycl i ngEnabl ed = TRUE;
br eak;
/* 500 nms on tine, 3 second TP Interval */
case 2 :
User LowPwr . PushToFi x = 0;
User LowPwr . OnTi e = 500;
User LowPwr . LPI nterval = 3000;
User LowPwr . Pwr Cycl i ngEnabl ed = TRUE;
br eak;
/* continuous power */
case 3 :
User LowPwr . PushToFi x = 0;
User LowPwr . OnTi ne = 0;
User LowPw . LPI nterval = 0O;
User LowPwr . Pwr Cycl i ngEnabl ed = FALSE ;
br eak;
}

/* Note we do not check return value */
M _Set LowPower (&User LowPwr) ;

return 1;

Effect of TricklePower on Message Rates

In continuous mode, navigation cycles occur every second. During TricklePower
operation, the navigation cycle time is specified by the user and al messages are
output at a rate dependent on the user-specified TricklePower parameters. The receiver
outputs an OK to send message (MID 0x12) with a 0x01 data byte to indicate that it is
ready to receive data. When the receiver is unable to receive data, it outputs an OK to
send a message with a 0x00 data byte indicating that communication must stop. This
type of handshaking is used by SiRFdemo as a form of flow control. Messages are not
lost if this handshaking method is used. See the SRFstarlle Evaluation Kit User’s
Guide for more details.

Low Power Operation 9-9

1]
©

Push-to-Fix

9-10

The output of SIRF binary output messages is fairly straightforward under these
conditions since the output rates are specified in multiples of cycles (see “User
Interface Overview” on page 1-5). NMEA messages, on the other hand, have output
rates defined in periods of seconds and thus are only output when the NMEA message
period and a navigation cycle are coincident.

Example:

If the user specifies a 3-second TricklePower cycle and a NMEA output rate of
5 seconds for a GGA message, the message is output every 15 seconds.

In Push-to-Fix mode, the receiver automatically awakens every Push-to-Fix period
(default is every 30 minutes (1800 seconds)) to obtain a position fix, collect ephemeris
(if needed), and calibrate the real-time clock (RTC) (if needed). This GPS functionality
allows a quick navigation solution to be obtained when the user requests it by pushing
the reset button (S2) to reset the receiver. Upon activation, it searches for up to the
Maximum Acquisition Time to obtain a GPS solution. The maximum Acquisition Time
is described in “ Setting Low Power Acquisition Parameters’ on page 9-13. If a
solution is not obtained during that time, the receiver deactivates until the Push-to -Fix
period is reached. There is no duty cycle in Push-to-Fix operation as thereisin
TricklePower. The receiver reactivates and tries again, and this cycle repeats until a
successful GPS solution is computed. Once that has happened, the receiver deactivates
for another Push-to-Fix period and the process repeats itself.

The default for the Push-to-Fix period is 30 minutes and this update rate can be
changed via an M| function. In fact, the user settable range for the Push-to-Fix period
can be set as low as 10 seconds and as much as 2 hours (7200 seconds).

Unless the receiver has failed to refresh ephemeris for approximately four hours, such
that ephemeris has gone out of date, you can obtain a quick GPS solution (through a
hot start) upon resetting the receiver.

Enabling/Disabling Push-to-Fix

Push-to-Fix operation is controlled through the function M _Set LowPower () as
described in the Section “Enabling/Disabling TricklePower” on page 9-4. The function
prototype is reproduced here for convenience:

VERR M _Set LowPower (M _LP_PARAM *pDat a) ;

SRFstarlle System Devel opment Kit User’s Guide—Part 1 — Software—May 2002

©
1]

where:

typedef struct

{
| NT16 PushToFi x;
| NT32 OnTi ne; /* in mlliseconds */
| NT32 LPInterval; /* in mlliseconds */

BOOL Pwr Cycl i ngEnabl ed;
} M _LP_PARAM

® PushToFi x
0--> disable Push-to-Fix
1 --> enable Push-to-Fix

® OnTime
Must be amultiple of 100. OnTi me must be greater than or equal to 200ms and less
than or equal to 900ms. This parameter is used to set the TricklePower on time and
is not used when enabling Push-to-Fix

®* LPInterval
Must be a multiple of 1000 (i.e., 1 second). This parameter is used to set the
TricklePower on time and is not used when enabling Push-to-Fix

® Pwr CyclingEnabl ed
TRUE --> enable TricklePower
FALSE --> disable TricklePower

Note— VERR is a SIRF type defined in st dt ype. h that uses the values SUCCESS or
FAI LURE. The function returns FAI LURE if TricklePower is not supported by the
board on which the software is running. M _Set LowPower also returns FAI LURE if
the OnTime is <200 ms or if OnTime > 600ms and LPInterval < 2s, or if the
OnTime>900ms.

Push-to-Fix may be deactivated by calling M _Set LowPower with the PushToFix
parameter set to 0. To activate Push-to-Fix, M _Set LowPower must be called with
the PushToFix parameter set to 1.

Push-to-Fix mode takes precedence over TricklePower and for Push-to-Fix operation
both PwrCyclingEnabled and PushToFix must be set to TRUE. Maximum Acquisition
Time and Maximum Off Time defaults to 120000 ms (120 sec) and 30000 ms (30 sec),
respectively, just as in TricklePower. However, in Push-to-Fix mode the Maximum Off
Time is not used, the PushToFix period is used. These may be modified by a
subsequent call to M _Set AcqPar ans, see “Setting Low Power Acquisition
Parameters’ on page 9-13. User tasks can be enabled during Push-to-Fix operation, as
described in Chapter 10, “User Tasks, ASIC Interrupts, and the Scheduler.”

Low Power Operation 9-11

Example:

This code example sets the receiver into Push-to-Fix mode as default. To restart the
S2SDK after the board has gone into Low Power mode press the reset button (S2).

ul

{

MSG. C
VERR U _Open (void)

VERR Ret ;
M _LP_PARAM User LowPwr ;

/* range check SRAM Ul . Protocol A/B; set to default if exceeded */
if ((SRAM Ul . Protocol A >= U _PROTO MAX) ||
(SRAM Ul . Prot ocol B >= U _PROTO MAX) ||
(!ValidateSramNmeaCf g (SRAM Ul . NVEAbaud)) ||
(SRAM Ul . crc !'= Conpl et eCRC16 ((UI NT8 *) &SRAM Ul . Prot ocol A,
sizeof (SRAM U) - sizeof (SRAM Ul .crc)))

Ul _SetU Sram (I D_INITIALI ZE, 0, 0);

pProt oA = &Protocol Cf g[SRAM Ul . Prot ocol A];
pProt oB = &Protocol Cf g[SRAM Ul . Pr ot ocol B];

Ret pProt oA->I ni t MsgTabl e(); /* l|oad saved SRAM table cfg */
Ret | = pProtoB->IlnitMgTabl e();

Ret | = pProt oA->Cpen (UART_A, hportA);

Ret | = pProtoB->Cpen (UART_B, hportB);

/* Get current |ow power paraneters */
M _Get LowPower (&User LowPwr) ;

/* Enabl e Push-to-Fix */
User LowPwr . PushToFi x = 1;
User LowPwr . Pwr Cycl i ngEnabl ed = TRUE;

/* Set Push-to-Fix */
M _Set LowPower (&User LowPwr) ;

return Ret;

9-12

SRFstarlle System Devel opment Kit User’s Guide—Part 1 — Software—May 2002

©
1]

Setting Low Power Acquisition Parameters

In addition to OnTi ne and LPI nt er val , there are two additional TricklePower
parameters that can be set. These are the Maximum Acquisition Time and Maximum
Off Time. In Push-to-Fix mode, the Push-to-Fix period is used instead of the
Maximum Off Time. The MI_SetPtfPeriod and MI_GetPtfPeriod routines must be used
to change the Push-to-Fix period, see Appendix C for module interface details.

Although OnPeriod and TricklePowerlnterval dictate the GPS receiver behavior in
normal TricklePower operation when an unobstructed view of satellites are available,
there are specia provisions for situations in which a GPS position cannot be computed
due to blocked visibility. In such cases, TricklePower is temporarily disabled, (i.e.,
switches to continuous power operation), until a navigation solution (fix) is obtained or
the Maximum Acquisition Time is reached. Setting the Maximum Acquisition Time
allows power to be saved even in situations where a search for satellites is
unsuccessful. The Maximum Acquisition Time is the time at which the receiver gives
up and deactivates if unable to compute a GPS solution. When this happens, the
receiver deactivates for the Maximum Off Time while in TricklePower operation.

Example:

OnPeriod = 300 ms, TricklePowerlnterval = 2 seconds. Thus, duty cycle = 0.3/2.0 =
0.15. If Maximum Acquisition Time = 120 seconds (2 minutes) and Maximum

Off Time = 30 seconds, and the receiver is running in an obstructed location such

as a parking garage, then the receiver searches for satellites for 2 minutes. If it does
not find any satellites the receiver deactivates for the Maximum Off Time of 30
seconds (default value). If the user wants to maintain the same TricklePower duty
cycle while the receiver is trying to find satellites, then the Maximum Off Time needs
to be adjusted. For example; 120 sec divided by 0.15 = 800 seconds (13-1/3 minutes).

Therefore, the Maximum Off Time can be viewed as a limit on the amount of time the
receiver turns off, regardless of how long it searches fruitlessly for satellite signals.
Conversely, for applications in which power management is more important than
limiting power-off periods, (e.g., remotely sited receiversin locations with intermittent
blockages), where maximal power savings is desired, the Maximum Off Time can be
set to a period greater than 800 seconds so that a lower duty cycle is maintained.

The user may set the Low Power acquisition parameters through a call to
M _Set LpAcqPar ans () . The prototype for this function is specifiedinm _i f. h
and is as follows:

VERR M _Set LpAcqParanms (M _LP_ACQ PARAM *pDat a) ;

where:

typedef struct
{
U NT32 MaxAcqTine; /* in mlliseconds */
U NT32 MaxOFfTinme; /* in mlliseconds */
} M _LP_ACQ PARAM

Low Power Operation 9-13

9-14

®* MaxAcqTi ne
Must be a positive integer not greater than MAX_INT32.

* MaxOF f Ti me
Must be a positive integer not greater than MAX_INT32.

Note — WERR is a SIRF type defined in st dt ype. h that uses the values SUCCESS
or FAI LURE. The function returns FAI LURE if TricklePower is not supported by the
board on which the software is running. The function aso returns FAI LURE if
MaxAcqTime or MaxOffTime is out of bounds (i.e., O or greater than MAX_| NT32).
The defaults of 120 s and 30 s are used in this case.

When M _Set LowPower is called, the values of the Maximum Acquisition Time and
Maximum Off Time are set to default values of 120 seconds and 30 seconds,
respectively. Once Low Power is enabled (through acall to M _Set LowPower),
calling M _Set LpAcqgPar ans takes effect within the next TricklePower cycle, and
the user’s parameters MaxAcqTi me and Max O f Ti me are used instead of the default
values.

If M _Set LpAcgPar ans is caled with MaxAcqTi me or MaxOF f Ti me out of
range, both parameters are ignored, and the default values (120000 ms for
MaxAcqTi me and 30000 ms for MaxCf f Ti ne) are used instead.

The current settings for these parameters can be obtained through a call to
M _Get LpAcqgPar ans.

VWERR M _Get LpAcqParans (M _LP_ACQ PARAM *pDat a) ;

SRFstarlle System Devel opment Kit User’s Guide—Part 1 — Software—May 2002

User Tasks, AS Clinterrupts, andthe
Scheduler 10=

Task based processing in the SiRFstarlle is controlled by the scheduler. The scheduler
is activated every time a 100 ms interrupt is received from the ASIC. When an ASIC
interrupt is signaled, the SCH_| SR() (SCHEDULE. C) is called and the source of the
interrupt is determined by examining the ASI C_| NTSTAT (0x800A0010) register. If
the source is the 100 ms interrupt (0x0040, bit 6) then the scheduler is activated. See
the SRFstarlle System Development Kit User’s Guide Part 2 - GSP2e Chip for more
details about the interrupt controller and interrupt registers.

When the interrupt is received, the scheduler updates the system time and then
schedules the highest priority task currently in the task queue to be launched after the
interrupt routine terminates. In this way, a high priority task can be placed in the task
gueue and then launched after the next 100 ms interrupt, regardless of the low priority
background task currently active. If atask is running, and the scheduler determines
that no higher priority tasks have been scheduled since the last 100 ms interrupt, it
continues to execute. Tasks are ordered by priority at compile time, with the most
critical tasks given the highest priority. Task priorities are set in SCH_| CD. H.

For custom applications, the code for a user task has already been added. This
implementation ensures that a user task will run at the desired interval, regardless of
the Low Power state. See “Adding a User Task” on page 10-4 for implementation
details.

Note — GPS is extremely time critical and if a user task interferes with the GPS
operation, tracking and navigation are adversely affected.

Figure 10-1 demonstrates how the scheduler works. The key is that the IRQ ISR is re-
entrant. Assume that a 100 ms interrupt has already occurred and a low priority task is
currently running: this means that the IRQ handler was entered, the asicl SR(') function
was executed and program execution reached the Dispatch function. The Dispatch
function ends up executing the function associated with the low priority task. Just
before entering the Dispatch function, interrupts are enabled.

Now assume that we get another 100 ms interrupt. The old IRQ is interrupted
(remember that we are running the task function through Dispatch with interrupts
enabled) and a new |RQ interrupt is started, forming a type of nested interrupt. Now
when we get to the Dispatch function, it checks to see if the current highest priority
task (of any type) is the old running task. If so, the IRQ terminates and the old IRQ
resumes running (meaning the old task resumes). If there are higher priority tasks

10-1

10

which have been scheduled, the IRQ loops until the higher priority tasks are done
(assuming it is not interrupted again). If it finishes all the other scheduled higher
priority tasks, then the IRQ terminates and the old task (and IRQ) resume.

While looping in the Dispatch function, tasks are only executed if they are on the
scheduled task list. Tasks are removed from the scheduled list as soon as they get
executed. Because of this, the old running task is not executed again.

IRQ (armstart.s, RE-ENTRANT!!!)

L,

SCH_ISR() (schedule.c)

AS C Interrupts

10-2

|—> Dispatch()

Get next task to run
If (next task not equal to current running task)
While (tasks are pending)
Put scheduled task on active task list
Get function ptr to scheduled task
If (task function ptr exists)
Enable Interrupts
Execute task function
Disable Interrupts

End if
Put task that just finished back on to pending list
Get next highest priority task to run
End while
Else
return to current task
End if

Figure 10-1 Workings of the Scheduler

The satellite signal tracking loop processing is handled by the satellite signal tracking
engine (SSTE) implemented in hardware. The fastest periodic interrupt generated by
the GSP2e is at a 100 ms rate. This rate is greatly reduced compared to the previous
generations of GPS ASICs requiring 1 ms interrupt servicing. As aresult of this, the
software scheduler currently runs at a maximum rate of 10 Hz (100 ms). The GSP2e is
still capable of generating both 1 ms and 20 ms interrupts. These signals are disabled
by default, but can be activated by adjusting the interrupt enable register

ASI C_| NTENA (0x800A0004). Bits 7 and 8 (0x0080 and 0x0100) are used for the
20 ms and 1 ms interrupts respectively. The timer interrupts must be acknowledged by
writing to the timer interrupt acknowledge register ASI C_TI MERACK (0x800A0038)
with bit 2 (0x0004) acknowledging the 20 ms interrupt and bit 4 (0x0010)
acknowledging the 1 ms interrupt.

The GSP2e has two interrupt levels, IRQ and FIQ, with FIQ being the highest. All
ASIC interrupts are generated on the same ARM IRQ interrupt level. These must be
identified based on the contents of a status register. ARM FIQ interrupt level is not

SRFstarlle System Devel opment Kit User’s Guide—Part 1 — Software—May 2002

10=

used at present, and therefore available for user implementations. The ASIC interrupt
serviceroutine asi ¢l SR() iscalled in response to any IRQ-level interrupt. Based on
the bits set in the interrupt status register, the appropriate interrupt handler(s) in the
following subsections are called. Initial Acquisition processing is also called from this
handler when the 100 ms interrupt is present during initial acquisition. For more
information on interrupt handling, see the SRFstarlle System Development Kit User’s
Guide Part 2 - GSP2e Chip.

Timer Interrupt

Timer interrupts are generated periodically based on the system clock (different from
the processor clock). The timing of this interrupt is controlled by S/W. Currently it is
set at 100 ms which is the minimum rate fully supported by the Satellite Signal
Tracking Engine, or Tracker (SSTE). The GPS S/W tasks are scheduled from this
interrupt handler, including the 100 ms task, the 1 Hz execution task, and the
background task (scheduled at 1 Hz). The 100 ms task performs processing of
measurement data of channels that are tracking, or processing of reacquisition data if
the channels are in search. The 1 Hz execution task controls the receiver manager,
50 BPS data processing, navigation, and user interface through the serial
communication port. The Background task performs Satellite State Computation and
Satellite Selection.

UART Interrupt

UART interrupts are generated by the UART on the ASIC whenever there is data to be
transmitted or datais received. The processing of these interrupts is done by the UART
functions called uar t | SRHandl er () . This handler calls the appropriate transmit or
receive processing for UART A and/or UART B. Note that the ISR does not deliver the
data directly to the application layer. The data is buffered and passed to the application
layer (user interface) after the GPS core has signaled a MI_EV_NAV_COMPLETE or
MI_EV_WAIT_INITIAL_ACQ event.

Low Power Operation Interrupt

Low Power Operation interrupts are generated by the Real Time Clock (RTC). The
RTC is programmed to generate a wake up pulse after the required off-time elapses.
The RTC is used for scheduling user tasks and to activate the receiver for the start of a
new low power mode navigation cycle. More information on User tasks can be found
later in this chapter. The Low Power software has built-in logic to determine which
task is appropriate.

Beacon Interrupt

The Beacon interrupts are generated by the internal Beacon only if the software has
been compiled with the Beacon option. The Beacon option is no longer user settable.
The processing of these interrupts is handled by the Beacon Interrupt Handler which
acknowledges the interrupt, performs initial data processing, and schedules the
execution of the function to handle the DGPS interrupt data for further processing if

User Tasks, ASIC Interrupts, and the Schedul er 10-3

10

Adding a User Task

10-4

necessary. The function to handle the DGPS interrupt data is the primary routine for
the internal DGPS receiver data processing that processes the data or checks the data
validity.

A provision for periodic scheduling of a user task is included, and can be activated by
compiling with the preprocessor macro TASK PERI OD defined (see “Basic Compile
Switches’ on page 4-5). TASK_PERI OD must be an integer in units of milliseconds.
For example, to periodically schedule atask to be executed every 200 ms, define
TASK_PERI OD as 200. Source files affected by TASK_PERI OD are schedul e. c,
exec_if.h,sch_icd. h,anduser. c. To disable user tasks, define

TASK_PERI OD as 0.

The user task priority is set to 4, which is higher priority than the SiRF navigation task
(1 sec task) but lower than the tracker task (100 ms task). Task priorities are defined in
exec_i f. c. For TricklePower, you must verify that the user task does not demand
excessive processor throughput; (i.e., there must be enough throughput available so
that the SiRF navigation task has enough time to complete before the next
TricklePower wakeup interrupt). You must also verify that the user task can be
completed before the next user task is scheduled TASK _PERI OD milliseconds later.

With TASK_PERI OD defined to the desired period, a call to the user function must be
placed in Ul _User TaskFuncti on(), which isdefined inuser . c. User tasks are
scheduled using the Real-Time Clock (RTC) regardless of whether a Low Power mode
is active or not. During deactivated periods, the processor activates every
TASK_PERI OD milliseconds, executes the user task, and then deactivates. Some other
notes are given below.

® You must verify that the task can run before the next one is scheduled. With the
SiRF scheduler, the user task is not called re-entrantly if there is already one
running when another is scheduled, it goes on to the pending task list. However, if
you consistently schedule user tasks faster than they are being executed, you can
end up losing some.

® |f you are using TricklePower, the TricklePower interval must be an integer
multiple of the task interval because the RTC is driving both the user task and
TricklePower. A TricklePower cycle is launched in response to an RTC interrupt
(same interrupt driving the user task) provided that the TP interval has elapsed. If
you set the task interval longer than the TP interval, the TP interval will in effect be
equal to the task interval. Thus the RTC is not the right mechanism for launching
occasional user tasks that run less frequently than the TP cycle.

® |f you take too much throughput at a priority higher than GPS, you receive one-
second overruns and the GPS may fail (stops navigating).

Example:

Adding a user task at 200 ms that runs out 20 ms of processor time and flashes one of
the S2SDK LEDs. The 20 ms period is broken up into 2 ms slices. This is because the
Del ayM cr oSeconds() function disables interrupts and this cannot be allowed
over afull 20 ms period. First you must set the preprocessor definition
TASK_PERIOD = 200 (see “Basic Compile Switches’ on page 4-5).

SRFstarlle System Devel opment Kit User’s Guide—Part 1 — Software—May 2002

10

Example (Continued):

USER. C

voi d U _User TaskFuncti on(voi d)

{
/* test task -- gobble up 20 ns in 2 ns chunks. Interrupts are turned off during
* Del ayM croSeconds. Don’t want to have interrupts turned off the full 20 ms because
* it will kill 1/0 which interrupts us every ~4 ns */
int i;
for (i =0; i < 10; i++)
{
Del ayM croSeconds(2000); /* 2 ns delay */
/* toggle LED */
ASI C_GPl O_PORTDI R2 | = 0x20;
ASI C_GPl O_PORTVAL2 ~= 0x20;
}
return;
}
Sart/Sop GPSFunctions

Two functions, LPUser St art GPS() and LPUser St opGPS() , are provided so
that you can control SIRF GPS operation. When LPUser St opGPS() is called, the
GRF chip is turned off immediately. GPS tasks that are currently executing or
scheduled run to completion, after which no further GPS tasks are run. The processor
remains activated. If LPUser St ar t GPS() is subsequently called, the software resets
and GPS operation resumes.

Note — Any user tasks running when LPUser St art GPS() is called, including the
task from which LPUser St art GPS() is called, are terminated by the reset. Also,
when LPUser St art GPS() is called, it resets the whole receiver. When the GPS
portion of the receiver isturned off, there are no events generated by the GPS Core and
hence no message input/output is recognized. To use any Protocol event handlers, you
must generate your own event. Two examples of using the GPS start/stop commands
follow.

User Tasks, ASIC Interrupts, and the Schedul er 10-5

10

Example:

Use a user task to shut down the GPS after 60 seconds and then back on after

10 seconds. The preprocessor definition TASK _PERIOD=200 must be set (see “Basic
Compile Switches” on page 4-5"). Note the preprocessor definition
SDKTEST_GPSONOFF can also be used to enable the code found in USER.C file.

USER. C
#i f defi ned(SDKTEST_USERTASK) / / def i ned(SDKTEST_GPSONCFF)
static long int StartStopCount = 0;
#i f defi ned(SDKTEST_GPSONOFF)
static long int Count\WenStopped = O;
voi d U _User TaskFuncti on(voi d)
{
St art St opCount ++;
if (!LPQueryGPSSt opped())
{
if (StartStopCount > 300) /* 60 seconds * 5 user tasks per second */
{
ummDebugPrintf (" Turn of f GPS");
LPUser St opGPS() ;
Count WhenSt opped = Start St opCount ;
}
}
el se
{
if (StartStopCount - Count WhenStopped > 50) /* 10 sec * 5 user tasks per sec */
{
umDebugPrintf (" Turn on GPS");
LPUserStart GPS(); /* this will reset the receiver */
}
}
return;
}

Example:

Use the Poll SW Version input message to start and stop the GPS. See the second
example in “Enabling/Disabling TricklePower” on page 9-4 for more information on
using the Poll SW version command in Si RFdenn. exe as a debugging aid. The

10-6 SRFstarlle System Devel opment Kit User’s Guide—Part 1 — Software—May 2002

10=

preprocessor definition TASK _PERIOD=200 must be set (see “Basic Compile
Switches’ on page 4-5"). To use the protocol functions, a user event must be generated
by the user task. This test is done under continuous power.

M_IF.H

typedef enum

{

M _EV_NONE = 0,

M _EV_MEASURENVENT RCVD =1,

M _EV_NL_I NI T_DONE = 2048

, M _EV_USER = 4096 /* add user event */
} M _EVENT;
USER. C

static Count200ns = O;

voi d U _User TaskFuncti on(voi d)

{
/* Set up user function to trigger a user event once a second */
i f (Count200nms++ == 5)
{
/* Note that this debug output will only work */
/* because we are signaling an event */
umDebugPrintf (" User Task one second");
Count 200nms = O;
/* If GPS is stopped, signal our own one second event */
i f (LPQueryGPSSt opped())
{
U _Event (M _EV_USER, 0);
}
}
return;
}
U_SIRF.C
/* Make sure input nessages used to set variables are still accepted */
#define M _EV_I NPUT ((M _EVENT) (M _EV_WAI T_I NI TI AL_ACQ M _EV_NAV_COWPLETE| M _EV_USER))

#define M _EV_LAST_OUT ((M _EVENT) (M _EV_MEASUREMENT RCVD| M _EV_WAI T_I NI TI AL_ACQ))

User Tasks, ASIC Interrupts, and the Schedul er 10-7

10

Example (Continued):

}VERR Sirflnput (M _EVENT Event, Ul NT32 Ti neCut put)
{
int i;
if (((Event & M_EV_NAV_COWLETE) != M _EV_NAV_COWLETE) &&
((Event & M_EV_USER) !'= M _EV_USER))

{
return SUCCESS;

}

unBeri al RxCheck(); /* check for new input nmsgs */

/* Process any input nsgs */
for (i =0; i < sizeof (amdSirf) / sizeof (U _SIRF_MSG DEF); i++)

{ if (amdSirf[i].State & | NPUT_READY)
{ i f (amdSirf[i].Handl er)
{ andSi rf[i]. Handl er ()
, }
}

return SUCCESS;

static int Handl ePol | SwWer si on (UvHandl e hMsg, U NT8 Msgld, U NT8 *pMsg, int MsglLen)

{
pMsg +=si zeof (U NT8); /*skip Msgld*/
pMsg +=sizeof (U NT8); /*skip ctrl*/
i f (QueueSwNer si on() ==SUCCESS

PushAck(M D_Pol | SwNer si on) ;
}

el se

PushNak(M D_Pol | Sw\er si on) ;
}

return 1;

}

10-8 SRFstarlle System Devel opment Kit User’s Guide—Part 1 — Software—May 2002

10

Example (Continued):

#if 1
/* If the GPS is currently off,
if (LPQueryGPSSt opped())
LPUser St art GPS() ;
/* else shut down the GPS */
el se
LPUser St opGPS() ;
#endi f

return 1,

turn it on (reset the board) */

User Tasks, ASIC Interrupts, and the Schedul er

10-9

10

10-10

SRFstarlle System Devel opment Kit User’s Guide—Part 1 — Software—May 2002

DGPSOperation nN=

The SiRFstarlle is capable of differential GPS operation, enabling a number of
possible sources for GPS range corrections. In Differential GPS, range corrections to
each visible satellite are generated at a known stationary site and then transmitted to
the SiRFstarlle. These range corrections are then applied to the measured ranges, and
compensate for the majority of the atmospheric error. The SiRFstarlle can obtain these
corrections through the Wide Area Augmentation System (WAAS), a beacon receiver
or an independent system supporting RTCM corrections. More information about each
of these sources is provided in the following sections. The WAAS and BEACON
preprocessor definitions must be set to have WAAS and Beacon differential capability
(see “Basic Compile Switches’ on page 4-5).

Stting Differential Correction Source

There are four possible settings for differential correction sources. The first three are
ready to use and include WAAS, internal beacon, and external RTCM. Thereis also
provision for a user defined interface that provides the DGPS corrections directly to
the GPS Core through a Module Interface routine. WAAS provides GPS corrections
through a series of Geostationary satellites. The advantage of WAAS is that the signal
is broadcast on the same frequency as GPS and no extra hardware is needed. The
disadvantage is that WAAS is afairly weak signal, similar to GPS, and the receiver
must have a line-of-sight to the satellite.

The S2SDK comes equipped with an internal beacon receiver, capable of tracking the
Coast Guard Radio Beacons that provide GPS corrections. This is a fairly robust
Differential GPS provider since it does not require line-of-sight communication. The
disadvantage is that the beacon receiver requires its own antenna and RF section.

The SiRFstarlle can also be used with an external source of DGPS corrections that
uses RTCM format messages. The SiRFstarlle accepts RTCM type 1, 2, 3 and 9
messages through one of the serial ports. The default differential behavior is to accept
RTCM messages through Port 2. In a custom application, it is also possible to input the
differential corrections directly into the GPS Core using a Module Interface Routine

M _Set DgpsCor r s() . Usage of this method is only recommended for advanced
users of GPS.

111

11

To change the default source of differential corrections, you must modify the value of
Def aul t Correcti onType indgpst ype.h. The possible values are:

®* COR_NONE
No differential values accepted.

* COR_WAAS
Uses one GPS channel to track a WAAS satellite and provide corrections.

® COR_SERI AL
External source providing RTCM type corrections.

® COR | NTERNAL BEACON
Uses the internal beacon to track a MSK radio-beacon with another antenna.

®* COR_SOFTWARE
Corrections provided using a Module Interface routine in custom user application.

Example:

To change the default source of differential corrections to the internal beacon receiver,
verify that:

#define Defaul t Correcti onType COR_| NTERNAL_BEACON

S RF Binary Messagesfor Differential

11-2

There are atwo SIRF binary messages that are of interest for differential operation of
the SiRFstarlle. These messages include a control message

(M D_DGPSSour ceCont rol) and a poll message (M D_DGPSSt at us) . Both
are described in the following subsections. The HandleSetDGPS_Src() routine in
Ul_SIRF.C provides details about the MID_DGPSSourceControl message and the
QueueDgps _Src() routine in Ul_SIRF.C provides details on the MID_DGPSStatus

message.

Set DGPS Source Control (MID 0x85)

Description

A control message defined with an ID name of M D_DGPSSour ceCont r ol . This
input message is used to set the DGPS source.

Arguments

Note — Variable names do not reflect the actual variable names used in a routine.

Ul NT8 DGPSSource
Ul NT32 DGPSfrequency
Ul NT8 DGPSbi t Rat e

SRFstarlle System Devel opment Kit User’s Guide—Part 1 — Software—May 2002

11=

DGPSOperation

® DGPSSour ce selects the desired source of DGPS corrections and are defined as:
0 = No Source Selected
1 = WAAS receiver channel
2 = Seria port via RTCM messages
3 = Internal Beacon Receiver

®* DGPSfrequency isthe desired beacon frequency of the internal beacon receiver.
This field has no effect if beacon is not selected. The frequency can be set to a
specified value or the auto-scan mode engaged by setting the frequency to 0.

* DGPShi t Rat e isthe desired beacon bit rate. The valid values are: 25, 50, 100 and
200 bits per second. Setting the bit rate to zero enables an auto scan mode of all bit
rates.

DGPSSatus (MID 0x1B)

Description

A status message defined with an ID name of M D_DGPSSt at us. This message is
output if the DGPS correction source is switched from COR_NONE to another value.

Arguments

Note variable names do not reflect the actual variable names used in routine.
U NT8 DGPSSource

Ul NT32 DGPSfrequency

U NT16 DGPSbit Rate

U NT8 DCPSstatusBits

I NT32 signal Mag

I NT16 signal Strength

I NT16 signal SNR

® DGPSSour ce reports the selected source of DGPS corrections and are defined as:
0 = No Source Selected
1 = Internal Beacon Receiver
2 = WAAS receiver channel
3 = Seria port via RTCM messages
4 = Software provided corrections

®* DGPSf requency reports the current frequency of the internal beacon receiver.

® DGPSbi t Rat e reports the current bit rate of the internal beacon receiver.

11-3

11

DGPSst at usBi t s report status of the receiver as follows:
Bit O - Internal Beacon locked

Bit 1 - Internal Beacon auto frequency

Bit 2 - Internal Beacon auto bit rate

Bit 3- WAAS tracking

Bit 4 - RTCM received on serial port

si gnal Mag reports the raw signal count from DGPS receiver.

si gnal St rengt h reports the signal strength in dBm from the internal beacon

receiver.

si gnal SNR reports the signal to noise figure of the internal beacon receiver.

Module Interface Routinesfor Differential

This section lists a number of Module Interface routines that are used regardless of the

differential operation of the receiver. These routines are described in detail in
Appendix C, “Module Interface Details. These functions can be implemented in

custom user application code or called through the SiRF binary messages described in

“SiRF Binary Messages for Differential” on page 11-2.

11-4

WERR MI|_GetDgps Mode (MI_DGPS_MODE *pData);

WERR MI|_GetDgpsStationID (INT16 *pData);

WERR MI_GetDgpsCorrAge (float *pAge);

WERR MI_GetDgpsSpecialM sg (char buf[91]);

WERR MI_GetDgpsAlm (UINT16 entry, DGPSAImMType * pData);
WERR MI_GetDgpsStationPos (double ecefPog[3]);

WERR MI|_GetDgpsSrc (int *pData);

WERR MI_SetDgpsSrc (int * pData);

WERR MI_GetDgps_Mode (MI_DGPS_MODE *pData);

WERR MI|_SetDgps Mode (MI_DGPS MODE *pData);

WERR M| _SetDgpsCorrs(INT16 SVID,double GPSTime,double PRC,double
RRC,INT16 10D);

WERR MI_SetDgpsSrc (MI_DGPS_SRC *pData);
WERR MI_SetShasPrn(int prn);

SRFstarlle System Devel opment Kit User’s Guide—Part 1 — Software—May 2002

AddingaNew User Protocol 2=

SiRF recommends using the existing protocols when making modifications to the serial
interface. New input and output messages can then be generated using the methods in
“Adding New Input/Output Messages’ on page 8-6. The added advantage is to enable
the use of the already defined messages in the testing and evaluation of the unit. In the
case that a new user protocol is desired, a code framework has been provided to aid in
development. This Protocol has the name USER1 and can be set as the default output
on Port 1 using the USER1 preprocessor definition.

Protocol | mplementation

Before adding a new Protocal, it is important to understand how Protocols are used in
the SDK code. Each Protocol has a similar set of functions which fully define its
capabilities. To enable a specific protocal, it is necessary to redirect the generic
function calls from the GPS Core to the specific function call of the desired Protocol.
This redirection makes it possible to rigidly define the Module Interface to the GPS
Core while allowing a broad range of modification on the Protocol side. The
redirection isdonein Ul _MSG. C. A look at this file reveals that the Protocols are
defined in Pr ot ocol Cf g[] asaseries of structures, each of which has a set of
unique (with maybe some default) functions. Figure 12-1 shows the functions which
are required by each protocol and the concept of the Module Interface redirection.

12-1

12

12-2

Output Protocol
pProtoA = &ProtocolCfg[“NMEA"]]

SiRF Binary

-‘X‘ USER1

Start Up

NMEA

L

UI_Open() pProtoA ->InitMsgTable() \
Main Code pProtoA -> Open()
J [NmealnitMsgTable]
MI_EVENT (°)
Ul_Event() 4 > pProtoA -> Output() [NmeaOpen]
: : [NmeaOutput J
— pProtoA -> Input()
ERROR |) [Nmealnput]
Ul_Error() ’ P ¢
NullError
pProtoA -> Error() []
Shut _>\)
Down P Y [NmeacClose]
I_’ pProtoA -> Close()

Figure 12-1 Protocol Redirection

The NMEA indicator in this case is the value of SRAM Ul . Pr ot ocol A. For the case
of the NMEA Protocol, the functions that actually end up getting called are shown as
well. Thisis afairly straightforward naming procedure and each protocol is similar.
Note that the NMEA protocol does not have its own error function associated with it
but instead uses a default function called Nul | Er r or . An examination of the

Pr ot ocol Cf g[] structurein Ul _MSG. Creveals that several protocols make use of
the NullError function. Also note that in the RTCM protocol, the Ul _Qut put
function is defaulted to Nul | Qut put . Thisis possible because the RTCM protocol is
not used to output information and there is no point in generating a unique output
function. If you do not require the functionality, use the NULL default function. The
actual purpose of each function shown in Figure 12-1 follows.

® |nitMgTable
Used to initialize Protocol variables. Can be used to restore variables from battery-
backed SRAM, for example, loading a message configuration table. Thisis called
when the Protocol is first instantiated.

® U _Open
This function initializes the UART (Baud rate, parity, and bits), registers the
protocol for that UART, registers message handlers to parse incoming messages and
overrides some default protocol functions (put, send, deliver, and allocBuffer) if
necessary.

SRFstarlle System Devel opment Kit User’s Guide—Part 1 — Software—May 2002

12=

Adding a New User Protocol

® Ul _Qut put
Called every time an event is signaled by the GPS Core. When the event is
signaled, the protocol can determine what action to take. As an example, for an
M _EV_NAV_COVPLETE (navigation complete) event, a position and time may be
output. The event handler can retrieve required data using the M _ Get XXX()
routines. See M _| F. Hfor alist of these Module Interface routines. For more
information on the implementation of output messages see “Adding a New SIRF
Binary Output Message” on page 8-7.

® U _Input
Called just after Ul _Qut put when an event has been signaled by the GPS Core. It
is provided to enable processing of input message set commands in an ordered
manner. When an input command is received to set some internal variable,
M _Set XXX() routines can be used to interact with the GPS Core and potentially
the battery-backed area of SRAM. For more information on the implementation of
input messages see “Adding a New SIRF Binary Input Message” on page 8-10.

® U _Error
This function is provided to handle exception conditions. For example, when UART
buffers are exhausted. The protocol may decide whether to ignore or handle the
error condition. Normal operation may result in calls to this function. For example,
when a bad parity condition is detected in the 50 bps GPS navigation message. This
may be due to normal signal blockage, but in an open sky environment may indicate
problems with the RF front end.

® U _Cose
This function closes the UART subsystem. This is called just prior to a module
restart and enables the protocol to save status information or send out a termination

message.

When a protocol isfirst initiated by acall to its Ul _Open function, it makes a number
of modifications to the way information is handled by the UART. The Protocol can be
considered a part of alarger UART structure that is handling UART serial
communication. Figure 12-2 shows a general overview of the UART structure. The
UART structure contains information covering both interrupt processing and normal
processing at the User Interface level. On the User Interface side, operation is driven
by events from the GPS Core. On both sides, this UART structure covers buffer
allocation and management. The ISR routines make use of some protocol specific
information including the Baud rate, bits, parity and start/stop characters. The Rx and
Tx ISR handlers are contained in ASI CUART. C.

The Rx ISR recognizes single or double sequence termination characters and then
deliver the whole buffer over to the application side. If your user protocol does not
have defined termination characters then a different mechanism for delivery from the
ISR layer to the application code is necessary. See “Single Character Delivery” on
page 12-12 for an example of single character delivery to the application layer. The
Protocol also defines a function (f pURcvr) that delivers the message to a receiver
gueue that can be accessed by the User Interface code. The default function that

f pURcvr callsisunRcvr Prot ocol in UMANAGER. C.

On the User Interface side, a new Protocol can override the default send, put, deliver
and allocBuffer functions. The default functions are unDef aul t Send,

unDef aul t Put, unDefaul t Del i ver, and unDef aul t Al | oc defined in
UMANAGER. C. The Send and Put functions are used for message output while the

12-3

12

USERI1 Protocol

12-4

Del i ver function is for message input. The Protocol also can register message
handlers. To see how the various protocols are initialized, see the associated Ul _Open
functions. Implementing a User Protocol is described in the next section.

)

4 UART Structure

4 s
* UART A/B - Buffer Maintenance
 UART Control « Interrupt Control
| « rxHandler / txHandler
« Stop/Start Characters
* Baud, Parity, Bits
* fpURcvr

ISR

.

« Deliver These function
* Send pointers have
* Put defaults which
* AllocBuffer can be
overridden by
active protocol

Set New Ul Protocol

INTERFACE

* Message Handlers

C

Figure 12-2 Overview of Uart Structure and Effect of Changing Protocol

The SDK already contains the shell for a user protocol known as USER1. Setting the
preprocessor definition USER1 as shown in “Basic Compile Switches” on page 4-5
defaults the Port 1 protocol to the User Protocol. Take a moment to run this build and
review the output on aterminal program. The S2SDK must output the following string:

****xx USERL1_PROTOCOL4B

In User 10pen the send, al | ocBuf f er and del i ver functions are redirected,
but the put function is left as the default function (unPut). Figure 12-3 shows the
output sequence for this message. The 4B on the end of the output string is a 16 bit
CRC added by the User 1Send function in User 10pen that overrides the default
send function in User 10pen. The***** preamble is added to the beginning of
the output buffer when it isfirst allocated in User 1Al | ocBuf . The SEND_| TEMcall
in Qut put USERL() is a macro that calls the User Protocol put function.

SRFstarlle System Devel opment Kit User’s Guide—Part 1 — Software—May 2002

12

Ul_Event (Ul_MSG.C) —»(OutputUSER1 R
* Called from GPS e UserlAllocBuf
Core ¢ Redirected ‘allocBuffer’
¢ Allocates Buffer
¢ Adds Preamble
—PKUserloutput) e Set Message Data, for this case
« Outputs on any event, ‘USER1_PROTOCOL’
not just . SEND_lTEM
MI_EV_NAV_COMPLETE e transfers data to buffer. Thisis a
_ . macro calling default ‘put’
function
~ N ¢ UserlSend
—(Userlinput

G

Stubbed

¢« Calculates and adds 16 bit CRC
to buffer
¢ Thisis redirected ‘send’ call

+ calls UartSend and transfers
buffer to transmit queue

* Note that no CR,LF is added
. J

Figure 12-3 Output Sequence for USER1 Protocol

Example:

The following example implements a user protocol with two input messages and one
output message. One of the messages is used to switch the Port over to SiRF Binary
protocol, and the other is used to start/stop the GPS Core. Thisis similar to the second
example given in “ Start/Stop GPS Functions’ on page 10-5. You must add a User task
and event to trigger the 1/0O capability because no GPS events are generated when the
GPS is off. The default setting for Port one is USER1 at 9600 Baud. A terminal
program can be used to test this implementation.

Protocol Definition:

The Log (Output) Message format is contained inside a pair of brackets and followed
by a carriage return, line feed. The line contains a 16 bit CRC that is calculated using
all characters between (but excluding) the first open bracket and the asterisk (*). When
GPS is turned off the GPS TOW and ECEF coordinate fields are zero.

(L[O..9], [Y..N, GPS TON ECEF X coord, ECEF Y coord, ECEF Z coord*[CRC1][CRC2]) [CR[LF]

Adding a New User Protocol

where:

L[0. . 9] isthe message identifier, L for alog message with ten possible unique
identifiers (0 to 9).

[Y.. N] indicatesif GPSis enabled, Y for Yes, N for No.
GPS TOWis the GPS Time of Week obtained from the GPS Core.

ECEF X coor d isthe Earth-Centered Earth Fixed X coordinate in meters to one
decimal place.

12-5

12

ECEF X coor d isthe Earth-Centered Earth Fixed X coordinate in meters to one
decimal place.

ECEF X coor d isthe Earth-Centered Earth Fixed X coordinate in meters to one
decimal place.

* jsaend of data indicator.

[CRC1] isthe MSB of the 16 bit CRC.
[CRC2] isthe LSB of the 16 hit CRC.
[CR] isacarriage return.

[LF] isaline feed.

Example Output M essage:

(LO, Y, 512915. 5, - 2682820. 5, - 4307710. 1, 3850638. 1*B3)

The Command (Input) message is much simpler and does not contain a CRC (although
the user can add one). This implementation is simple and only looks at the message
identifier and not any contents. The format allows for ten possible unique message
identifiers.

(d0..9]) [CRI[LF]

Example Input M essages:
(C0) Switch the Port to SIRF Binary protocol at 19200 Baud.
(C1) Toggle the GPS state between off and on.

Code Changes:

To run this example, the following preprocessor definitions must be defined, USER1
and TASK_PERIOD=200 (see “Basic Compile Switches’ on page 4-5). As shown
below, you must add a user event and the User task to trigger the event when GPS is
off.

M IF.H
typedef enum
{
M _EV_NONE = 0,
M _EV_MEASUREMENT _RCVD =1,
M _EV_NL_I NI T_DONE = 2048
, M _EV_USER = 4096 /* add user event */
} M _EVENT;
12-6 SRFstarlle System Devel opment Kit User’s Guide—Part 1 — Software—May 2002

12

U _NMVEA. C

/* renpove static from Float2Ascii prototype and function definition*/
voi d Float2Ascii (float FValue, INT16 right, char* pQutString);

U _USERL. C

/* need sonme other include files for extra functions */
#i ncl ude <stdlib. h>
#i nclude <string. h>

/* add two nessage handlers which will be registered in Userl1lQpen */
static int Handl eSet Si RFProt ocol (UvHandl e hMsg, U NT8 I D, U NT8 *pMsg, int Len);
static int Handl eToggl eGPS (UvHandl e hMsg, UINT8 I D, U NT8 *pMsg, int Len);

/*Add nmore functionality to handl e new user input messages. Now we can check the */
/* contents and pass the MD on to MsgDeliver which will call our registered Handl er */
static int UserlDeliver (PrivateHandl e hPriv, U NT8 *pMsg, int MsglLen, U NT8 Mgl d)
{
UVHandl e hMsg;
hMsg = (UWHandl e) hPriv;
switch (Msgld)

{
case M D_Lookl nMessage:
{
/* check header */
if (!strncnp((CHAR *)pMsg, "(C', 2))
{
/* Get the MD of the current nessage, currently we want 0 or 1 */
CHAR cI D = atoi ((CHAR *) (pMsg+2));
return nsgbDeliver (&Msg->handlers, (U NT8) clD, pMg, MsglLen);
}
}
br eak;

case M D BufferFull:

case MD_ParityError:
case M D_RcvFul |l Error:
case M D _RcvOverrunError:
case M D FraneError:

Adding a New User Protocol 12-7

12

return nmsgDel i ver (&Msg->handlers, Msgld, pMsg, MsglLen);

defaul t:

br eak:

}

/* default comes here */

return nmsgDel i ver (&Msg->handl ers, M D _TransportDataError, pMg, MsglLen);

/* W have to nodify this function to include unBerial RkCheck to check the */

/* buffers which are filled by the UART interrupt service routines!! */
/* Note that we will check either on a Navigation event, or, if GPS is not */
/* active we can use the user generated event */

VERR User 1l nput (M _EVENT Event, Ul NT32 Ti neCut put)
{

if (((Event & M _EV_NAV_COMPLETE)! = M _EV_NAV_COVPLETE &&
((Event & M_EV_USER) != M _EV_USER))

{

}

return SUCCESS;

unBeri al RxCheck(); /* check for new input nsgs */

return SUCCESS;

/* Again, we have to nodify the Qutput handler so that we can trigger */

/* on a user event as well as a Navigation conplete event. */
VERR User 1Qut put (M _EVENT Event, U NT32 Ti meQut put)
{

if (((Event & M _EV_NAV_COWPLETE) ==_M _EV_NAV_COWPLETE) | |
((Event & M _EV_USER) == M _EV_USER))
QueueSanpl e();

return SUCCESS;

stati c WERR QueueSanpl e (voi d)
{

UMBUf Handl e hBuf ;

static ECEF ecef;

M _GPS_TI ME ti negps;

CHAR buf[50];

hBuf = User 1Al | ocBuf (hConm O0);
if (!hBuf)
return FAI LURE;

12-8 SRFstarlle System Devel opment Kit User’s Guide—Part 1 — Software—May 2002

12

/* If GPS is stopped, output no position */
if (LPQueryGPSSt opped())
{
strcpy(buf,"0, N, 0,0,0,0");
urmPut s(hBuf, buf);
}
/* If GPSis active, get the time and ECEF position and send them out! */
el se

{
CHAR Ti meBuf f[15], XBuff[15], YBuff[15], ZBuff[15];

/* Note the use of these Mddule Interface routines to obtain data from?*/
/* the GPS Core. Check M_IF.H for prototype details */
M _Get GpsTi ne (&t i negps);

M _Get PosEcef (&ecef);

/* Note that this function is in U _NMEA H and we nust declare */
/* as an external */

Fl oat 2Ascii (ti nmegps. Tow, 1, Ti meBuf f);

/* note that Float2Ascii will not handl e nore than one */

/* decimal point here */

Fl oat 2Asci i (ecef. X, 1, XBuff);

Fl oat 2Ascii (ecef.Y, 1, YBuff);

Fl oat 2Asci i (ecef. Z, 1, ZBuff);

sprintf(buf,"0,Y, %, %, %, %", TinmeBuff, XBuff, YBuff, ZBuff);
/* Use the default Put string function to transfer to buffer */
urmPut s(hBuf, buf);

}

/* Send the whol e nessage, comit to transnmit queue */
return (hComm >send (hComm buf Handl e));
} /* Qutput USERL()*/

/* W nust register the start/stop characters, and the new nessage handlers. */
/* Note that we al so override the default deliver, send, and all ocbuffer */
/* commands here but not the put conmmand */

VERR User 10pen (UARTs Port, UwHandl e hMsg)

{
unBet Seri al Handl e (Port, hMsg); /* for Serial RxCheck [umanager. c] */
NAVSet Ser i al DebugFl ag (0); /* debug flag OFF for USERL, NO PRINTF()'s */
hComm = hMsg;

/* structure copy U _SRAM USERL info into Protocol Cf g[U _PROTO USER1].comm */
Ul _Get Prot ocol Cf g(Ul _PROTO_USER1) comm = Ul _SRAM USERlconm

hMsg- >device = uartlnit (hMsg->nUART,
U _Get Prot ocol Cf g(U _PROTO_USER1) comm hi t s,
Ul _Get Prot ocol Cf g(U _PROTO_USER1) comm baud,
U _Get Prot ocol Cf g(U _PROTO_USER1) comm st op,
Ul _Get Prot ocol Cf g(U _PROTO USER1) comm parity);

Adding a New User Protocol

12-9

12

/* Register the protocol start/stop characters */
uart Regi st er Prot ocol (hMsg->device, unRcvrProtocol, '(', CR LF, hMsg);

/* Register the default error nessage handlers */
nsgHandl erslnit (&Msg->handl ers,
(MessageHandl er) USER1NoOpHandl er,
(MessageHand! er) USERLError Handl er) ;

/* set up the USERL protocol handl ers*/
/ *hMsg- >put =*/

hMsg- >del i ver

hMsg- >send

hMsg- >al | ocBuf f er

User 1Del i ver;
User 1Send;
User 1Al | ocBuf;

/* Register for the | NPUT Messages to be handl ed*/

/* unRegi st er For Message (hMsg, MD....,xxxx handl er routine);*/
unmRegi st er For Message(hMsg, 0, Handl eSet Si RFPr ot ocol) ;
unmRegi st er For Message(hMsg, 1, Handl eToggl eGPS) ;

return SUCCESS;

/* Use the Al ocBuffer function to add our preanble before */

/* adding the new nessage. Note that the “L” is for a */
/* log output nmessage. It is not necessary to do this */
/* here but it saves sonme work */

static UMBUf Handl e User 1Al | ocBuf (UWVHandl e hMsg, | NT16 MsglLen)

{
UnBuf Handl e hBuf;
hBuf = umvakeUBuf (hMsQ);
i f (hBuf) /* put in the USERL preanbl e nessage*/
{
*hBuf - >pBuf fer++ = ' (’;
*hBuf - >pBuf fer++ = 'L’ ;
hBuf - >byt esl nBuf fer = 2;
}
return hBuf;
}
/* The User1Send function is used to tack on the last bit of our */
/* transport layer. W want to add a 16 bit Checksum a close bracket */
/* and a carriage return line feed. */

static int User1Send (UwHandl e hMsg, UMBUf Handl e hBuf)

{
Ul NT8 *pMsg;
Ul NT16 crc;
if ('hMsQ)
{

12-10 SRFstarlle System Devel opment Kit User’s Guide—Part 1 — Software—May 2002

12

return O;
}
pMsg = hBuf - >pl Buf f er +hBuf - >byt es| nBuf f er;
crc = Conpl et eCRC16 (hBuf->plBuffer + 1,
hBuf - >byt esl nBuffer - 1);
sprintf ((char *) pMsg, "*%2X', crc); [/* fill in the CRC */
hBuf - >byt esl nBuf fer += 3;

/* add CR, LF to end */

pMsg = hBuf - >pl Buf f er +hBuf - >byt esl nBuf f er;

*pMBgt++ =)7,
*pMeg++ = CR
*pMsg = LF;

hBuf - >byt esl nBuf fer += 3;

return uart Send (hMsg->devi ce, hBuf);

/* W nust add our two new nessage handlers !! */
static int Handl eSet Si RFProt ocol (UvHandl e hMsg, U NT8 I D, Ul NT8 *pMsg,

{
UARTPar ans comm /* comm parans: baud, bits, stop, parity, pad0 */

int protocol ;
comm baud = 19200;
commbits = SERIAL_BITS;
comm st op = SERI AL_STOP;

conm parity SERI AL_PARI TY;

protocol = 0; /* SiRF binary */

M _SetU _Proto (U _PROTO USERL, protocol, TRUE, FALSE);
M _Set Conm (protocol, (void *) &omm FALSE);

NAVFor ceReset (PROTOCOL_CHANGE, “ Set Si RF Prot ocol ") ;

return 1; /* we received one nessage */

}
static int Handl eToggl eGPS (UvHandl e hMsg, UINT8 I D, U NT8 *pMsg,
{
if (LPQueryGPSSt opped())
LPUser St art GPS() ;
el se
LPUser St opGPS() ;
return 1;
}

int Len)

int Len)

Adding a New User Protocol

12-11

12

/*

{

USER. C

This is our user task function which will execute every 200 ns */

voi d U _User TaskFuncti on(voi d)

/* execute once a second */

/* \W have to execute our own event every second */
/* to keep the I/0O going */

static int Count200ms=0;

i f (Count200ns++

{

Count 200ns = O;

i f (LPQueryGPSSt opped())

{

}
}

return;

/* toggle LED to show we are still alive*/
ASI C_GPl O_PORTDI R2 | = 0x20;

ASI C_GPl O_PORTVAL2 ~= 0x20;

U _Event (M _EV_USER, 0);

Sngle Character Delivery

12-12

In some cases it might be necessary to use a protocol that cannot be handled based on
termination characters. There are two options in this case, you can modify the ISR
routines in ASI CUART. C to correctly fill the buffer and then pass it to the user
interface code as a complete message using f pURcvr and the standard Del i ver
function, or you can use the ISR to just pass each character individually and do the
parsing and buffering in the user interface code. A good start for this is the RTCM
protocol. This protocol bypasses most of the ISR buffering and message validation and
instead uses character by character transmission to the application layer.

Example:

With the receiver set up in the factory default mode, SIRF binary on Port 1 and RTCM
input on Port 2, echo characters received through the RTCM port as a debug output on
the SIRF Binary Port.

SRFstarlle System Devel opment Kit User’s Guide—Part 1 — Software—May 2002

12

RTCWSR. C

static void RcvrProtocol (void *pCtxt, UARTBuffer *pUB,
{

U _RTCM BUF *pCur;

pCur = &Rt cnBuf [Buf Switch];

umDebugPrintf(“echo : %l”, Byte);

if (pCur->Cnt < RTCM BUF_SI ZE)

{
pCur -> Buf[pCur->Cnt] = (U NT8) Byte;
pCur -> Cnt ++;
return;

}

pCur->Cnt = 0O;

UARTPr ot ocol Reason Byt e)

Adding a New User Protocol

12-13

12

12-14

SRFstarlle System Devel opment Kit User’s Guide—Part 1 — Software—May 2002

GPIO Lines

GPIOLines, Throughput and Wait
Sates 13=

This chapter describes how to set the alternate functions for the GPIO lines and
provides an overview of CPU clock considerations, wait state settings, and throughput
measurements. See the System Development Kit User’s Guide Part 2 - GSP2e Chip for
more information.

The GSP2e 100 pin TQFP has 13 GPIO lines, while the GSP2e 144 pin LQFP has 46.
The actual number of available GPIO lines for user development depends on the
hardware layout of the board. Most GPIO pins are multi-functional and are often used
for other purposes. Examples include chip selects, debugging support pins, microwire
interface and external interrupts. Some of the GPIO lines are also used for power
control during Low Power operation and may not be available. For the GSP2e 144 pin
LQFPR, selecting the 32 bit bus mode automatically sets the alternate functions of
GPIO[35:20] to ED[31:16]. See the System Development Kit User’s Guide Part 2 -
GSP2e Chip for GPIO functions and default settings. To enable the alternate
function(s) of a GPIO, the ASI C_GPlI O SEL(0x80010100) register must be
modified. For information on how the S2SDK LEDs are controlled using GPIO lines
(see “S2SDK LED Activation” on page 6-12).

Note — One of the first actionsin ARMSTART. Sisto initialize the GPl O_SEL register
(0x80010100). GPIO_SEL is also referred to as ASIC_GPIO_SEL. For the Multi-lce
JTAG and the Icebreaker Macrocell in the GSP2e to function properly, the lowest bit
(bit 0) in the GPIO Select register must be set high (alternate function) in the software.
If thisis not done, the JTAG device will have difficulty connecting to the board.

The value of the GPIO select register is also set in MAI N. C using the
ASI C_Set GPI O_Sel ect routine. User modifications to the GPIO select register
can be added here.

13-1

13

Example:

At startup, in file MAI N. C a statement was added to configure the aternate functions
of some of the General Purpose Input/Output (GPIO) lines as follows:

/1 |

I
#endi f

/1 |

#i f ndef
I

#endi f

/*

/*

/*

/*
/*
/*
/*
/*

/* set the default GPI O SEL register */
gpioBits =

GS_| CE_BREAKER
GS_SERI AL_AGC

#i f def BEACON

GS_uW RE

GS_GRF_ACTI VE
PPS_OFF
GS_1PPS

GS_EXT_INTO */
GS_EXT_INT1 */
GS_EXT_INT2 */

GS_CS2 /* This may be overridden by UC EstablishConfig bel ow */
| GS_CS3 */
| GS_Cs4 */
| GS_CS5 */
| GS_CsS6 */
| GS_CS7 */

ASI C_Set GPI CSel ect (GS_GRF_ACTI VE) ;
ASI C_Set GPI Osel ect (gpi oBi ts);

13-2

You can comment out or remove the comment to enable and disable functions as
necessary. The GS_| CE_BREAKER define is used to enable the DBGEN pin so that
the JTAG functions.

Table 13-1 lists the GPIO lines and their alternate functions for the GSP2e. The
Alternate Enable Bit is the bit in the ASI C_GPI O_SEL that must be set high to enable
the alternate function. When alternate input is not selected, the default input is
specified in the Default Alternate Input Value column. On most GPIO lines, either a
pull-up or pull-down resistor is built into the chip. The last entry details the timer
synchronization function. Some GPIOs (0, 3, 5, 13, 9, 14 and 15) can be used as a
timer input by setting the value of the GPIO Timer synchronization register in
0x80010148. You must add a DEFINE value for this register location since there is not
one currently. When a logic pulse is received through a pin set for timer
synchronization, the GSP2e latches the segment counter into the Segment Count Latch
Register 0x800d1246. This value can then be read by the CPU at a later time.

SRFstarlle System Devel opment Kit User’s Guide—Part 1 — Software—May 2002

13

Table 13-1 GPIOs and Alternate Functions on the GSP2e

Alternate Default Internal
Enable GSP2e-7400 | GSP2e-7401 | GSP2e-7410 | GSP2e-7411 Alternate Pull-up/

No. | Bit 100 Pin 100 Ball 144 Pin 144 Ball Pin/Ball Name | Input Value | Pull-down | Notes

0 0 49 J3 67 A4 DBGRQ/ 0 Pull-down |1
GPIO0/
TREQA

1 0 48 K1 66 B4 DBGEN/ 0 Pull-down |1
GPIOY/
TREQB

2 0 N/A N/A 114 N4 BREAKPT/ 0 Pull-down |1
GPIO2/
TACK

3 1 78 J9 115 P4 GPIO3 -- Pull-down

4 1 76 K11 117 N5 GPIO4 -- None

5 2 44 H3 62 C6 SI/GPIO5 0 Pull-down

6 2 43 H4 61 B6 SO/GPIO6 -- Pull-down

7 2 45 J2 63 D5 SK/GPIO7 0 Pull-down

8 3 47 G5 65 B5 PWRCTL/ -- None
GPIO8

9 4 42 J1 60 A6 TIMEMARK/ | -- Pull-down
GPIO9

10 |5 46 H5 64 A5 EITO_N/ 1 Pull-up
GPIO10

11 |6 N/A N/A 75 D3 EIT1 N/ 1 Pull-up
GPIO11

12 |7 N/A N/A 109 P1 EIT2 N/ 1 Pull-up
GPIO12

13 |8 54 N/ 81 El CS1 N/ -- Pull-up
GPIO13

14 |9 53 J5 80 E2 CS2_N/ -- Pull-up
GPIO14

15 |10 52 M4 79 E3 CS3_N/ -- Pull-up
GPIO15

16 |11 N/A N/A 77 D1 Cs4 N/ -- Pull-up
GPIO16

17 |12 N/A N/A 3 M13 CS5_N/ -- Pull-up
GPIO17

18 |13 N/A N/A 2 L12 CS6_N/ -- Pull-up
GPIO18

GPIO Lines, Throughput and Wait Sates 13-3

|
=13
Table 13-1 GPIOs and Alternate Functions on the GSP2e (Continued)
Alternate Default Internal
Enable GSP2e-7400 | GSP2e-7401 | GSP2e-7410 | GSP2e-7411 Alternate Pull-up/
No. | Bit 100 Pin 100 Ball 144 Pin 144 Ball Pin/Ball Name | Input Value | Pull-down | Notes
19 (14 N/A N/A 1 M12 CS7_N/ -- Pull-up
GPIO19
20 | ED width | N/A N/A 72 B2 ED[16] Pull-up
/GPI020
21 | ED width | N/A N/A 70 B3 ED[17]/ Pull-up
GPIO21
22 | ED width | N/A N/A 43 C10 ED[18]/ Pull-up
GPI0O22
23 | ED width | N/A N/A 41 All ED[19]/ Pull-up
GPIO23
24 | ED width | N/A N/A 38 Al12 ED[20]/ Pull-up
GPI024
25 | ED width | N/A N/A 36 Cl4 ED[21]/ Pull-up
GPIO25
26 | ED width | N/A N/A 34 C12 ED[22]/ Pull-up
GPIO26
27 | ED width | N/A N/A 32 D13 ED[23]/ Pull-up
GPIO27
28 | ED width | N/A N/A 71 A3 ED[24]/ Pull-up
GPIO28
29 | ED width | N/A N/A 68 C5 ED[25]/ Pull-up
GPI029
30 | ED width | N/A N/A 42 Cl1 ED[26]/ Pull-up
GPIO30
31 | ED width | N/A N/A 39 B12 ED[27]/GPIO31 Pull-up
32 | ED width | N/A N/A 37 B13 ED[28]/ Pull-up
GPI032
33 | ED width | N/A N/A 35 C13 ED[29]/GPIO33 Pull-up
34 | ED width | N/A N/A 33 D14 ED[30]/ Pull-up
GPIO34
35 | ED width | N/A N/A 30 E13 ED[31]/ Pull-up
GPIO35
36 |15 N/A N/A 144 P13 GPIO36 Pull-down
37 |15 N/A N/A 143 N13 GPIO37 Pull-down
38 |15 N/A N/A 142 N12 GPIO38 Pull-down
39 |15 N/A N/A 141 P12 GPIO39 Pull-down
40 |15 N/A N/A 112 N3 GPIO40 Pull-down
13-4 SRFstarlle System Devel opment Kit User’s Guide—Part 1 — Software—May 2002

13

Table 13-1 GPIOs and Alternate Functions on the GSP2e (Continued)

Alternate Default Internal
Enable GSP2e-7400 | GSP2e-7401 | GSP2e-7410 | GSP2e-7411 Alternate Pull-up/
No. | Bit 100 Pin 100 Ball 144 Pin 144 Ball Pin/Ball Name | Input Value | Pull-down | Notes
41 |15 N/A N/A 111 P3 GPIO41 Pull-down
42 |15 N/A N/A 110 N2 GPI042 Pull-down
43 |15 N/A N/A 108 N1 GPI0O43 Pull-down
44 | 15 N/A N/A 107 M1 GPI044 Pull-down
45 |15 N/A N/A 106 M2 GPI045 Pull-down
-- TimerSynch 0 2

Chip Select Wait Sates

GPIO Lines, Throughput and Wait Sates

1 TheTICinterface uses DBGRQ, DBGEN and BREAKPT asl/O. The TIC interface must use the pinswhen
io_TMODE islow andio_TMBIST ishigh. The GPIO usesthe | CE BREAKER interface as the alternate function for
these pins. The TIC interfaceisMUXed separately.

2 TheTimerSynch input isasecond alternate function for thefollowing GPIOs: 0, 3, 5, 13, 9, 14 and 15. The default
valuefor thisinput isO. If the second alternate function hasto be used for aparticular GPIO, that GPIO must be
configured asaGPIO (i.e., not alternate function) in input mode. The GPIO for the second alternate function can be
selected from the GPIO_TimerSynch register.

This section gives information on the access time and wait states required for the
various memory configurations based on CPU Clock speed. The wait states are set in
the Chip select registers. Some of these registers (CSNO, CSN1 and CSN2) are
initialized in CLKADJ. S. If you want to use other chip selects, you must add this code
and verify that the memory selected can be accessed using the wait state setting.

Access time for external memory may be decreased through use of the cache.

Table 13-2 shows the access times and wait states for external memory speeds and
CPU clock speeds. Wait states can be selected from 0 to 7 and the wait state value is
normally the expected access time in cycles, decreased by two. Wait states to access
internal memory (CACHE, battery-backed RAM) are handled automatically by
internally generated handshake signals. Wait states for external memory are
programmed in the BIU chip select registers.

13-5

|
=13
Table 13-2 Clocks and Wait States to Access External Memory, with and without Cache Enabled
GPS ACQ GPS/2 ACQ/2 GPS/4 ACQ/4
49.1 38.19 24.55 19.09 12.28 9.5
MHz MHz MHz MHz MHz MHz
ROM + 1clk 1clk 1clk 1clk 1clk 1clk
CACHE
ON +
HIT
ROM + See for See for See for See for See for See for
CACHE memory memory memory memory memory memory
ON + type type type type type type
MISS below below below below below below
15 ns 2 clks 2 clks 2 clks 2 clks 2 clks 2 clks
memory ows ows ows ows ows ows
70 ns 5 clks 4 clks 3 clks 2 clks 2 clks 2 clks
memory 3WS 2 WS 1WS oOwWs o0wWSsS 0Ws
90 ns 6 clks 5 clks 4 clks 3 clks 2 clks 2 clks
memory 4 WS 3WS 2WS 1WS oOWwWs oOws
120 ns 7 clks 6 clks 5 clks 3 clks 2 clks 2 clks
memory 5WS 4 WS 3WS 1WS oOWs oOws
The above numbers indicate the number of clocks for a 16-bit access on a 16-bit bus.
For other configurations, the number of clocks needs to be adjusted by a multiplier as
given in the following table. For combination of ROM + CACHE ON + MISS, the
pipeline has to be refilled with four 32-bit words. That is 4x number of clocks for
selected 32 bit memory, 8x number of clocks for 16 bit memory and 16x number of
clocks for 8 bit memory. Table 13-3 shows the Multiplier for number of clocks
required for memory access as given in Table 13-2.
Table 13-3 Multiplier for Number of Clocks Required for Memory Access
Compiler Bus Mode
Configuration 8 bit 16 bit 32 bit
ARM (32 hit) x4 X2 x1
Thumb (16 bit) X2 x1 x1
13-6 SRFstarlle System Devel opment Kit User’s Guide—Part 1 — Software—May 2002

Converting UTC Timeto GPSWeek

Number and TOW

A=

This appendix provides an example of converting UTC time to GPS week number and

TOW.

#i ncl ude <stdio. h>

t ypedef
t ypedef

typedef
typedef

t ypedef

typedef
{

long int |INT32
int | NT16

unsi gned long int U NT32;

unsi gned int
unsi gned char

struct

BYTE hh;
BYTE nmm

BYTE

} TIME

typedef
{

BYTE
BYTE

SS;

struct

day;
nont h;

U NT16 year;

} DATE

typedef
{

Ul NT32

struct

Ul NT16 weekno
} GPS_TOW

#defi ne
#defi ne
#def i ne
#def i ne

SECONDS_| N_WEEK
SECONDS_| N_DAY
SECONDS_| N_HOUR

ti meOf Week;

Ul NT16;

BYTE

/* GPS Tine of Week, in seconds */
/* Week nunber */

604800
86400

3600
SECONDS_| N_M NUTE6G0 /*

of

/* # of seconds in a week */
/* # of seconds in a day */
/* # of seconds in an hour */
seconds in a mnute */

|

=A
/ * :::*/
/* UTCt oTOW */
/* i nput : */
/* _TIME, _DATE contain current time and date */
/* out put */
/* GPS TOW cont ai ns week nunber and TOW */
/* ___ */

{

void UTCtoTONTIME tinme, DATE date, GPS TOW*gtm

U NT16 years, days, |eap_days, total _days, |eft_days;

Ul NT16 days in_nonth[] = {0,0, 31,59, 90, 120, 151, 181, 212,
243, 273,304,334 };
/* + 31, 28,31, 30, 31, 30, 31, 31, 30, 31, 30 */

/* UTC --> GPS time conversion.
PS time started on Sunday, January 6th 1980

*/
years = date.year - 1980; /* years since 1980 */
days = days_i n_nonth[date. nonth]; /* days since 1st January */

days += date. day;

/* after feb in the |eap year */

if ((date.year %4 == 0) && (date.nonth > 2))

days += 1, /* add the february 29th */

/* # of |eap days up to Decenber 31 of the previous year */

| eap_days = ((years-1) / 4) + 1;

/* 1980 was a | eap year */
total _days = (U NT16)(years * 365 + days + | eap_days - 6);
gt m >weekno = total _days / 7;
| eft _days = total _days % 7;

gtm>ti meOf Week = (Ul NT32) (((doubl e) (I eft_days) * SECONDS_| N_DAY)
+ ((double)tine.hh * SECONDS | N_HOUR)
+ ((double)tine.mMm * SECONDS | N_M NUTE)
+ (double)tine.ss
+ ((double)13.0));
/* 13 == UTC of fset from 1st Jan 1999 */

if(gtm>ti meCf Week >= SECONDS_| N WEEK)
{

gt m >weekno += 1;

gtm>ti mer Week -= SECONDS_| N_VEEK;

}

} /* UTCtoTOW */

SRFstarlle System Development Kit User’s Guide—Part 1 — Software—May 2002

voi d mai n()

{
TI VE tm
DATE dt;
GPS_ TOW gt m
tmhh = 22;
tmpmn = 13;
tmss = 45;

dt.year = 1999;
dt. nont h= 5;
dt.day = 10;

UTCt oTONt m dt, > n) ; /* convert tine/date to gps time */
/* for use with the SiRF binary M D Navigationlnitialization
command, nultiply the TONseconds) * 100 before sendi ng comrand

*/

printf("week num %\ n", gtm weekno);
printf("TOW U , gtmtinmed Wek);

} /* main */

Converting UTC Time to GPSWeek Number and TOW

SRFstarlle System Development Kit User’s Guide—Part 1 — Software—May 2002

SRF Binary Messages

S RF Binary Messaging Functions B

SiRF has defined a series of input and output messages for the SiRFstar series
receivers. Each SIRF binary message has a unique Message |dentifier (MID), defined
as avalue from 0 to 255. To verify compatibility between user defined messages and
future SiRF development, certain ranges of numbers have been set aside for user
development. Table B-1 shows the reserved user MID values.

Table B-1 Reserved User MID Values

Output MID Values |Input MID Values
0x61 to OX7F 0xB4 to OxC7

Except as noted, the receiver module responds with an Ack/Nak message to indicate
that an input message was accepted or rejected. All SIRF binary message structures are
definedinUl _IF. H and Ul _SI RF. C, messages are sent in Ul _SI RF. C and
received through registered handlers for a specific message type in Ul _SI RF. C

Some of the following structures list defaults for some values. To be certain of a
particular element default value, refer to the header files.

Table B-2 lists the current SiRF reserved input and output MID values. These are
defined in the code in PROTOCOL. H.

Table B-2 SiRF Defined MID Values

Output M essages I nput M essages

Dec. Hex Enum Dec. Hex Enum

0 0x00 MID_LooklnMessage 128 |0x80 MID_Navigationlnitialization
1 0x01 MID_TrueNavigation 129 0x81 |MID_SetNMEAMode

2 0x02 MID_MeasuredNavigation 130 (0x82 |MID_SetAlmanac

3 0x03 MID_TrueTracker 131 0x83 |MID_FormattedDump

4 0x04 MID_MeasuredTracker 132 (0x84 MID_PollISWVersion

5 0x05 MID_RawTrkData 133 |0x85 MID_DGPSSourceControl

6 0x06 MID_SWVersion

B-1

B-2

Table B-2 SiRF Defined MID Values (Continued)

Output Messages

I nput M essages

Dec. Hex Enum Dec. |[Hex Enum

7 0x07 MID_ClockStatus 134 |0x86 MID_SetSerialPort

8 0x08 MID_50BPS 135 0x87 |MID_SetProtocol

9 0x09 MID_ThrPut 136 |0x88 MID_SET_NAV_MODE

10 Ox0OA MID_Error 137 0x89 |MID_SET_DOP _MODE
11 0x0B MID_Ack 138 (0X8A MID_SET_DGPS MODE
12 0x0C MID_Nak 139 (0x8B MID_SET_ELEV_MASK
13 O0xOD MID_VisList 140 |0x8C MID_SET_POWER_MASK
14 OXOE MID_Almanac 141 |0x8D MID_SET_EDITING_RES
15 OxOF MID_Ephemeris 142 |0x8E MID_SET_SS DETECTOR
16 0x10 MID_TestModeData 143 OX8F |MID_SET_STAT _NAV

17 Ox11 MID_RawDGPS 144 0x90 |MID_PollClockStatus

18 0x12 MID_OkToSend 145 0x91 |MID_SetDGPSPort

19 0x13 MID_RxMgrParams 146 (0x92 MID_PollAlmanac

20 0x14 MID_TestModeData2 147 0x93 MID_PollEphemeris

21 0x15 MID_NetAssistReq 148 0x94 MID_FlashUpdate

22 0x16 MID_StopOutput 149 0x95 |MID_SetEphemeris

23 ox17 MID_CompactTracker 150 0x96 MID_SwitchOpMode

24 0x18 MID_DRCritSave 151 0x97 |MID_LowPower

25 0x19 MID_DRStatus 152 0x98 MID_PollIRxMgrParams

26 O0x1A MID_DRHiRateNav 153 [0x99 MID_TOWSync

27 0x1B MID_DGPSStatus 154 0x9A |MID_Poll TOWSync

28 0x1C MID_NL_MeasData 155 0x9B |MID_EnableTOWSynclnterrupt
29 Ox1D MID_NL_DGPSData 156 0x9C MID_TOWSyncPulseResult
30 Ox1E MID_NL_SVSateData 157 0x9D MID_DRSetup

31 Ox1F MID_NL_InitData 158 |0x9E MID_DRData

32 0x20 MID_MeasureData 159 O0x9F |MID_DRCritLoad

33 0x21 MID_NavData 160 |0xAO0 MID_HeadSyncO

34 0x22 MID_WaasData 161 |OXxAl |Free Space

35 0x23 MID_TrkComplete 162 |0xA2 MID_HeadSyncl

36 0x24 MID_TrkRollover 163 0XA3 MID_E911HSPingRef

37 0x25 MID_TrklInit 164 O0xA4 MID_E911RefPingHS

38 0x26 MID_TrkCommand 165 (OxA5 |MID_ChangeUartChnl

39 0x27 MID_TrkReset 166 |[0xA6 MID_SetMsgRate

40 0x28 MID_TrkDownload 167 |0xA7 MID_LPAcgParams

41 0x29 |MID_GeodeticNav 168 (0XA8 MID_POLL_CMD_PARAM

SRFstarlle System Development Kit User’s Guide—Part 1 — Software—May 2002

oy
1]

SRF Binary Messaging Functions

Table B-2 SiRF Defined MID Values (Continued)

42 O0x2A MID_TrkPPS 169 OxA9 MID_SetDatum

43 0x2B MID_CMD_PARAM 170 | OXAA MID_SetShasPrn

44 0x2C MID_LLA

45 0x2D MID_TrkADCOdoGPIO

46 Ox2E MID_TestModeData3

B-3

Functionsfor Input Messages

Functions#1

static int HandleFormattedDump(UMHandle hMsg,UINT8 Msgld,
UINT8 *pMsg,int MsgLen);

static int HandleSetNavInit(UMHandle hMsg,UINT8 Msgld,UINT8 *pMsg,int
MsgLen);

static int HandleSetNmeaProto(UMHandle hMsg,UINT8 Msgld,
UINTS8 *pMsg,int MsgLen);

static int HandleSetDgpsComm(UMHandle hMsg,UINT8 Msgld,
UINTS8 *pMsg,int MsgLen);

static int HandleSetSirf Comm(UMHandle hMsg,UINT8 Msgld,
UINT8 *pMsg,int MsgLen);

static int HandleSetUiProto(UMHandle hMsg,UINT8 Msgld,
UINT8 *pMsg,int MsgLen);

static int HandleSetNavM odeM ask(UM Handle hMsg,UINT8 Msgld,
UINT8*pMsg,int MsgLen);

static int HandleSetDopM ask(UMHandle hMsg,UINT8 Msgld,
UINT8 *pMsg,int MsgLen);

static int HandleSetDgpsM ode(UMHandle hMsg,UINT8 Msgld,
UINT8 *pMsg,int MsgLen);

static int HandleSetDgpsSrc(UMHandle hMsg,UINT8 Msgld,UINT8 * pMsg,int
MsgLen);

static int HandleSetElevMask(UMHandle hMsg,UINT8 Msgld,UINT8 * pMsg,int
MsgL en);

static int HandleSetPwrMask(UMHandle hMsg,UINT8 Msgld,UINT8 * pMsg,int
MsgLen);

static int HandleSetStaticNav(UMHandle hMsg,UINT8 Msgld,UINT8 *pMsg,int
MsgLen);

static int HandleSetAlm(UMHandle hMsg,UINT8 Msgld,UINT8 *pMsg,int MsgLen);
static int HandleSetEph(UMHandle hMsg,UINT8 Msgld,UINT8 * pMsg,int MsgLen);

static int HandleSetOpM ode(UMHandle hMsg,UINT8 Msgld,UINT8 * pMsg,int
MsgLen);

static int HandleSetL owPwr(UMHandle hMsg,UINT8 Msgld,UINT8 * pMsg,int
MsgLen);

static int HandleSetL PAcgParam(UMHandle hMsg,UINT8 Msgld,
UINTS8 *pMsg,int MsgLen);

static int HandleSetUartChnls(UMHandle hMsg,UINT8 Msgld,
UINT8 *pMsg,int MsgLen);

SRFstarlle System Development Kit User’s Guide—Part 1 — Software—May 2002

B

S RF Binary Messaging Functions

static int HandleSetM sgCtrl(UMHandle hMsg,UINT8 Msgld,UINT8 * pMsg,int
MsgLen);

static int HandleSetShasPrn(UMHandle hMsg,UINT8 Msgld,UINT8 * pMsg,int
MsgLen);
Return Value

1if the message is correctly handled else 0.

Parameters

hMsg Message handle.

Msgld Message ID.

pMsg Points to the message buffer.
MsgLen Message length.

Remarks

These functions are mapped through umRegisterForMessage() in SirfOpen() to handle
the input SiRF-binary messages that are used for setting parameters within the receiver.
The function parses the input message and signals the Ul-event handler that the
message was received.

Functions#2

static int HandlePoll SwVersion(UMHandle hMsg,UINT8 Msgld,UINT8 * pMsg,int
MsgLen);

static int HandlePoll ClkStatus(UMHandle hMsg,UINT8 Msgld,UINT8 * pMsg,int
MsgLen);

static int HandlePollAlm(UMHandle hMsg,UINT8 Msgld,UINT8 *pMsg,int MsgLen);
static int HandlePollEph(UMHandle hMsg,UINT8 Msgld,UINT8 *pMsg,int MsgLen);

static int HandlePollRcvrParam(UMHandle hMsg,UINT8 Msgld,UINT8 * pMsg,int
MsgLen);

static int HandlePollCmdParam (UMHandle hMsg, UINT8 Msgld, UINT8 *pMsg, int
MsgLen);
Return Value

1if the message is correctly handled else 0.

Parameters
hMsg Message handle.
Msgld Message ID.

B-5

B-6

pMsg Points to the message buffer.
MsgLen Message length.
Remarks

These functions are mapped through umRegisterForMessage() in SIRFOpen() to
handle the input SIRF-binary messages that are used for polling output SiRF-binary
messages. The function parses the input message and queues the desired output

message.

SRFstarlle System Development Kit User’s Guide—Part 1 — Software—May 2002

S RF Binary Messaging Functions

Functions#3

static WERR SetDgpsComm (void);
static WERR SetSirfComm (void);
static WERR SetNmeaProto (void);
static WERR SetUiProto (void);
static WERR SetNavModeMask (void);
static WERR SetDopMask (void);
static WERR SetDopMode (void);
static WERR SetDgpsSrc (void);
static WERR SetElevMask (void);
static WERR SetPwrMask (void);
static WERR SetStaticNav (void);
static WERR SetAlm (void);

static WERR SetOpMode (void);
static WERR SetLowPwr (void);
static WERR SetL pAcgParam (void);
static WERR SetUartChnls (void);
static WERR SetShasPrn (void);

Return Value

SUCCESS (0) if the new settings are accepted else FAILURE (-1).

Remarks

Each function reflects an input SiRF-binary message that is used for setting parameters
within the receiver. It is called periodically through the navigation cycle, but it does

nothing unless the Ul-event for the message is signaled. If the event is signaled, it de-
signals the event and tries to set the new parameters. If the new settings are accepted,
it pushes an acknowledgment of acceptance (ACK) else it pushes an acknowledgment

of rejection (NAK).

B-7

Functionsfor Output Messages

Functions#1

static WERR QueueStartup (void);
static WERR QueueMeasNav (void);
static WERR QueueMeasTrk (void);
static WERR Queuel nitTrk (void);
static WERR QueueRawTrk (void);
static WERR QueueSwVersion (void);
static WERR QueueClkStatus (void);
static WERR Queue50bps (void);
static WERR QueueThruPut (void);
static WERR QueueVisList (void);
static WERR QueueAlm (void);

static WERR QueueTestModel (void);
static WERR QueueTestMode2 (void);
static WERR QueueTestMode3 (void);
static WERR QueueRtcm (void);
static WERR QueueOkToSend (void);
static WERR QueueRcvrParam (void);
static WERR QueueDgpsSrc (void);
static WERR QueueNIMeas (void);
static WERR QueueNIDgps (void);
static WERR QueueN|SvState (void);
static WERR QueueNlIInit (void);
static WERR QueueCmdParam(UINT8 Msgld);

Return Value
SUCCESS (0) if the message is queued correctly else FAILURE (-1).

SRFstarlle System Development Kit User’s Guide—Part 1 — Software—May 2002

W
1]

Remarks

Each function reflects an output SiRF-binary message, with the exception of
MID_Error, MID_Ack, and MID_Nak, which is being queued into the output buffers.
It builds the message and allocates enough buffer space for the message. Then, it puts
the message fields into the buffer(s) and queues the buffer(s) into the output buffers.

Function #2
WERR Ul_PushOkToSend(BOOL OkToSend);

Return Value
SUCCESS (0) if the message is pushed correctly else FAILURE (-1).

Parameters

OkToSend if TRUE accept input message else do not accept input message.

Remarks

This function reflects the MID_OkToSend SiRF-binary message that is being pushed
onto the output buffers. It builds the message and allocates enough buffer space for the
message. Then, it puts the message fields into the buffer(s) and pushes the buffer(s)
onto the output buffers.

Function #3
static WERR QueueEph(UINT8 Svid);

Return Value
SUCCESS (0) if the message is queued correctly else FAILURE (-1).

Parameters

Svid Satellite ID of ephemeris data that is being queued.

Remarks

The function reflects the MID_PollEphemeris SiRF-binary message that is being
gueued into the output buffers. It builds the message and allocates enough buffer space
for the message. Then, it puts the message fields into the buffer(s) and queues the
buffer(s) into the output buffers.

S RF Binary Messaging Functions B-9

B-10

Function #4

static WERR QueueError(UINT16 Errld, UINT16 Cnt, UINT32 *pParams);

Return Value
SUCCESS (0) if the message is queued correctly else FAILURE (-1).

Parameters

Errid Identification of the error.

Cnt Number of parameters of the error.
pParams Points to the parameter list of the error.
Remarks

This function is used to send an error through a SiRF-binary message.

Functions#5
static WERR PushAck(UINT8 Msgld);
static WERR PushNak(UINT8 Msgld);

Return Value
SUCCESS (0) if the message is queued correctly else FAILURE (-1).

Parameters
Msgld ID of message being ACK’ed or NAK' ed.

Remarks

These functions are used to push an acknowledgement to accept(ACK) or reject(NAK)
the reception of a Msgld message.

SRFstarlle System Development Kit User’s Guide—Part 1 — Software—May 2002

ModulelnterfaceDetails

C

An overview of the Module Interface is provided in “Module Interface Overview” on
page 1-5. This appendix describes the Module Interface events and the data structures
used by the various Module Interface routines when communicating with the GPS

Core.

Module I nterface Events

The Module Interface events are signaled by the GPS Core and used to control system
I/0. The events are defined in mi_if.h in an enumerated type called MI_EVENT.
Descriptions of the events are listed below.

Event

Description

MI_EV_NONE

Null event (never used).

MI_EV_MEASUREMENT_RCVD

M easurements have been read from the tracker
subroutines.

MI_EV_NAV_COMPLETE

Navigation routines are complete, a new navigation
solution might be available.

MI_EV_INITIAL_POSITION

Event signaled after the initialization of position, time,
and clock prior to the initialization of the navigation
information (MI_EV_NL_INIT_DONE event).

MI_EV_NEW_VISIBLE_LIST

A new satellite visible list has been computed.

MI_EV_NEW_50BPS

At least one channel has new 50 bps subframe data
available.

MI_EV_NEW_ALMANAC

New GPS almanac data is available.

MI_EV_NEW_EPHEMERIS

New GPS ephemeris data is available.

MI_EV_INITIAL_ACQ_COMPLETE

Initial acquisition is complete, at least one channel is,
or has been tracking since startup.

MI_EV_KRAUSE_COMPLETE

Not used for SiRFstarlle.

C-1

1]
o

Event Description

MI_EV_WAIT_INITIAL_ACQ Occurs once a second until initial acquisition is
complete. This event is generated each time anew SV
is searched for during initial acquisition. The time
varies depending on the search range given to the
tracker. For example, awarm start uses a narrow range
to acquire, and those searches are relatively fast. If
that fails, the search is expanded which causes the
time between events to increase. If necessary, you may
call Ml_GetTrkData to determine the ID of the
satellite that is currently being searched for.

MI_EV_MEASUPDATE M easurements have been received by the one-second
navigation update routine and are ready to be
processed.

MI_EV_NL_INIT_DONE Event signaled after the internal navigation filter has

initialized all navigation associated variables.

Module I nterface Routines

This section summarizes the Module Interface routines that can be used in custom
development to interact with the GPS Core. Also included are Module Interface Utility
routines which might be useful. The following list is alphabetical, but certain MI_Set
functions have been grouped with the corresponding M1_Get function if it exists.

GetCOG

Description

Function to return the Course Over Ground for a given horizontal velocity vector. The
return value is an azimuth (direction of travel) given in degrees (0 to 360) going
clockwise from true North.

Prototype

doubl e Get COG (VNED vned, char *cogBuf);

C-2 SRFstarlle System Development Kit User’s Guide—Part 1 — Software—May 2002

O
1]

GetDate

Module Interface Details

Arguments
typedef struct
{
DOUBLE Vn; /* North Velocity conponent */
DOUBLE Ve; /* East Velocity conmponent */
DOUBLE Vd; /* Down Velocity conponent */
}
VNED;
Par ameter Description
cogBuf Pointer to a buffer of characters where the ascii value of the
azimuth is stored with two decimal places. Useful for ascii
output.
Returns

The value of the azimuth (0 to 360) going clockwise from North.

Description

Function to convert the GPS TOW (time of week) and year number into UTC day,
month, and year. This function is used in conjunction with the FindDay and
FindMonth functions. This function can also be used in conjunction with the
ConvertTowtoUTC function which returns the UTC hour, minutes and seconds into the
current UTC day.

Prototype

voi d GetDate(int WkNum doubl e Tow, int *pYr,int *pMh,int *pDay);

C-3

c-4

MI_GetDatum

Arguments

Par ameter Description

WKNum Extended GPS week number (i.e., full number of weeks
since 01/06/80 with no 1024 GPS rollover). Obtained from
the navigation message plus 1024.

TOW GPS time of week from the navigation message.

pYr Pointer for the return value of the current year.

pMth Pointer for the return value of the current month.

pDay Pointer for the return value of the current day.

Description

Outputs the latitude, longitude and altitude for the current Datum selected in
SRAM.UI.datum. The default datum is WGS84. If the current datum is WGS84, then
the ECEF position is converted to LLA. If a different datum is selected, the ECEF
coordinates are adjusted to fit the new datum and then the LLA values are calculated
based on the new ellipsoid. New datums can be entered in this function, see
“MI_SetDatum” on page C-11 for more details. Altitude in this case is reference to the
ellipsoid. Note that this function is mathematically intensive and must be used

sparingly.

Prototype

VERR M _Get Datum (LTP *Itp);

Arguments

t ypedef struct_
{
DOUBLE Lat;
DOUBLE Lon;
DOUBLE Alt; _/* should change to Ht (above ellipsoid) */

}
LTP; /* Local Tangential Plan */

ConvertTowtoUTC

Description

Function to convert GPS TOW (time of week) into UTC hours, minutes and seconds.
This does not apply the leap second offset. You must use the MI_GetUTC function to
get the true UTC time after it has been corrected by the UTC parameters in the GPS

SRFstarlle System Development Kit User’s Guide—Part 1 — Software—May 2002

C=

navigation message. GPS time of week is the number of seconds that have elapsed
since Saturday midnight at Greenwich plus a number of leap seconds. GPS time has
been continuous since 01/06/80 and does not include the leap second adjustments that
are added to UTC time to match the earth’s orbit.

Prototype

voi d Convert Towt oUTC(double TOWN int *pHr, int *pM n, doubl e
* .
pSec);

Arguments

Par ameter Description

Tow GPS TOW (time of week) in seconds from GPS navigation

message.

pHr Pointer for return value of UTC hours in day.

pMin Pointer for return value of UTC minutes in hour.

pSec Pointer for return value of UTC seconds in minute.
ConvertECEFtoLTP
ConvertLTPtoECEF

Description

Module Interface Details

Functions to transform the WGS84 cartesian ECEF coordinates to WGS84 latitude,
longitude and height. To get latitude, longitude and height for a different datum see
“MI_GetDatum” on page C-4. To convert from LLA to ECEF, the function uses a
modified Carlson (iterative) method to obtain geodetic coordinates from ECEF
coordinates in three iterations.

Prototypes

voi d Convert ECEFt oLTP (ECEF *pecef, LTP *pltp);
voi d ConvertLTPt oECEF (LTP *plla, ECEF *pecef);

Arguments

t ypedef struct
{
DOUBLE X;
DOUBLE Y;
DOUBLE Z;

C-5

C-6

ECEF; /* Earth Centered Earth Fi xed */

typedef struct

{

DOUBLE Lat;

DOUBLE Lon;

DOUBLE Alt;/* should change to Ht (above ellipsoid) */
}

LTP; /* Local Tangential Plane */

MI_Get50Bps

Description

Function outputs the current GPS navigation subframe for a given channel. The output
includes the channel number, SV 1D and 300 bits of subframe data. GPS subframes are
concluded every 6 seconds. A full frame takes 30 seconds to decode and contains the
ephemeris data necessary to compute the satellite position and get the satellite clock
offset. It takes 25 frames (12.5 minutes) to obtain a complete amanac. If there is no
satellite being tracked or no subframe data available, the function will output NULL to
pData.

Prototype

VWERR M _Get 50BPS (M _50BPS *pData, int Chnl);

Returns
SUCCESS (0) if 50 BPS data can be retrieved else FAILURE (-1)

Arguments

typedef struct _M _50BPS
{

U NT8 Chnl;

U NT8 SVI D,

U NT32 Word[10];
} M _50BPS;

Par ameter Description

Chnl The channel number from which to get the subframe
information.

SRFstarlle System Development Kit User’s Guide—Part 1 — Software—May 2002

O
1]

MI_GetAlm

MI_SetAlm

Description

Functions to get/set the current GPS satellite amanac information.

Prototypes

VERR M _Get Alm (M _ALM *pAl m) ;
VWERR M _Set Alm (M _ALM *pAl m;

Returns (MI_SetAlm)
SUCCESS (0) if the settings are accepted else FAILURE (-1).

Returns (Ml_GetAlm)

SUCCESS (0) if almanac can be retrieved else FAILURE (-1).

Notes

MI_GetAlm

Retrieve entire almanac for all 32 satellites, 448 INT16 values; 448 arrived at as
defined constants:

ALMANAC _SI ZE = CVAX_SVI D_CNT * ALMANAC_ENTRY

Almanac information for satellites that are not available are zero-filled.

MI_SetAlm

Set entire Almanac for all 32 satellites, 448 INT16 values; 448 arrived at as defined
constants:

ALMANAC SI ZE = CMAX _SVI D CNT * ALMANAC ENTRY

Almanac information for satellites that are not healthy are zero-filled. No validity
checks are done on the almanac data. You must reset the receiver immediately

after setting the Almanac, this can be done by using the NAV ForceReset() function. In
the SIRF protocol, this is accomplished by sending the MID_Navigationlnitialization
command following a MID_SetAlmanac command that then causes a reset.

Module Interface Details C-7

Ul_GetCPUCIkRate

Description

Function to get the current CPU clock rate. This function views the BCLK_SEL
register and the BCLK_DIV register to get the current clock source and clock divider.
The function checks for GPS, ACQ and external clock sources. It bases its output on
the following DEFINE clock values for these three clock sources as shown in

Table C-1. The definitions are in Ul_MSG.C.

Table C-1 DEFINE Oscillator Values for the Various Clock Sources

Oscillator Source Frequency (Hz)
GPS Clock 49107000L
ACQ Clock 38194000L
External Clock (S2AR) 25000000L
External Clock (SDK) 25000000L
External Clock (Unknown board) 25000000L
Prototype

VERR Ul _Get Cpud kRate (int *pCd kRate);

Returns
SUCCESS (0) if CPU clock rate can be retrieved else FAILURE (-1).

Arguments
Par ameter Description
pClkRate The default clock frequency given by the clock select
register (0x80010014) divided by the clock divider value
obtained from the clock divider register (0x8001002c).
MI_GetClkBias
Description

Function returns the absolute difference between GPS and local internal time. The
difference is returned in units of nanoseconds.

SRFstarlle System Development Kit User’s Guide—Part 1 — Software—May 2002

O
1]

Prototype

VWERR M _Get d kBi as (I NT32 *pData);

Returns

SUCCESS (0) if clock biascan beretrieved else FAILURE (-1).

Arguments

Par ameter Description

pData Pointer for value of current offset in nanoseconds.
MI_GetCIKDrift

Description

Function returns the current value of the oscillator clock drift in Hz. The default value
is 96000 Hz. After initial start-up and a position has been generated, the actual clock
drift is stored in battery-backed RAM for use every time the receiver is powered on.

Prototype

VERR M _Get O kDrift (INT32 *pData)

Returns

SUCCESS (0) if clock drift can beretrieved else FAILURE (-1).

Arguments

Par ameter Description

pData Pointer for value of current drift in Hz.

MI_GetDgpsSc
MI_SetDgpsSc

Description

Module Interface functions provided to set/get the differential correction source.

Module Interface Details C-9

C-10

Prototypes

VWERR M _Get DgpsSrc(int *pData);
VERR M _Set DgpsSrc(M _DGPS_SRC *pDat a)

Arguments

typedef struct _M _DGPS_SRC
{

U NT8 Src;

U NT32 Freq;

U NT8 BitRate;
} M _DGPS_SRC,

Return Value

The MI_SetDgpsSrc _function returns 1 on FAILURE due to illegal correctionType
and a0 on SUCCESS. The M _Get DgpsSr ¢ _function returns SUCCESS (0) if
DGPS correction source can be retrieved else FAILURE (-1) if GPS is not running.

Par ameter Description

pData Pointer for value of the differential source. This can take the values of the
following enum:

typedef enum CorrectionTypes
{
COR_NONE = 0, /* Use no corrections */
COR WAAS = 1, /* Use WAAS channel */
COR_SERIAL = 2, /* Use external receiver */

COR_| NTERNAL_BEACON = 3, /* Use i nternal DGPS Beacon
*/

COR_SOFTWARE = 4 /* Corrections via
M _Set DgpsCorrs*/

} CorrectionTypes;

Notes

1. The function returns non-zero for undefined values of CorrectionTypes.

2. Cdlsto M _Set DgpsCor r s override the set correction type and corrections

provided through the function call are set as the exclusive source.

3. The default correction type can be changed by editing the DefaultCorrectionType

defined in DGPSTYPE. H.

SRFstarlle System Development Kit User’s Guide—Part 1 — Software—May 2002

O
1]

MI_GetDatum
MI_SetDatum
Description

Functions to get/set the current datum. The current Datum is used whenever the
MI_GetDatum() function is called. This function takes the current WGS84 ECEF
position, performs a transformation to get the ECEF coordinates in the new Datum and
then calculates the latitude, longitude and height for the new Datum and ellipsoid.
Currently, only five Datums are supported as shown in Table C-2.

Table C-2 Currently Supported Datums

Datum Reference Number
WGS84 21
TOKYO_MEAN 178
TOKYO_JAPAN 179
TOKYO_KOREA 180
TOKYO_OKINAWA 181

Prototypes

VWERR M _Get Dat um (Ul NT8 *pDat a) ;
VERR M _Set Dat um (Ul NT8 pDat a) ;

Arguments

The argument is either a pointer to a UINT8 value that is to be filled with the number
of the current Datum (as shown in Table C-2) or the new value of a desired Datum.

Return Value

The MI_SetDatum function returns SUCCESS (0) if the settings are accepted else
FAILURE (-1). The MI_GetDatum function returns SUCCESS (0) if the datum can be
retrieved else FAILURE (-1)if GPS is not running.

MI_GetDgps Mode
MI_SetDgps Mode

Module Interface Details

Description

Functions to get/set the current DGPS Mode. The user can select whether to ignore
differential corrections entirely, use differential corrections when they are available, or
navigate only when differential corrections are available.

c-11

C-12

Prototypes

VWERR M _Get Dgps_Mdde (M _DGPS_MODE *pDat a) ;
VERR M _Set Dgps_Mdde (M _DGPS_MODE *pDat a) ;

Arguments

typedef struct _M _DGPS_MODE
{

Ul NT8 Mobde;

Ul NT8 Ti neout ;
} M _DGPS_MODE;

Par ameter Description
Mode 0 = auto (use differential corrections if available).
1 = exclusive (only navigate if differential corrections are
available).

2 = never (never use differential corrections).

Timeout Maximum age of differential corrections. A value of 0 has
no timeout and the corrections are used indefinitely.

Return Value

The MI_SetDgps_Mode function returns SUCCESS (0) if the settings are accepted else
FAILURE (-1). The MI_GetDgps _Made function returns SUCCESS (0) if DGPS mode
can be retrieved else FAILURE (-1).

MI_GetDgpsAlm

Description

Module Interface function to get an almanac entry. This function also returns the
number of available entries.

Prototype

VERR M _Get DgpsAl m(U NT16 entry, DGPSAl niType *pDat a)

Arguments
UINT16 entry: The number of the almanac entry to be retrieved.

DGPSAImMType *alm: The structure into which the almanac information is written.
This structure has the form:

typedef struct

SRFstarlle System Development Kit User’s Guide—Part 1 — Software—May 2002

O
1]

INT16 | at; /* degs, scale factor 0.002747 deg */
I NT16 | on; /* degs, scale factor 0.005493 deg */
U NT16 range; /* in kmscale 0 to 1023 km */

U NT16 freq; /* 100Hz 0=190kHz Oxfff=599.5kHz */
Ul NT16 stationld; /* 0 to 1023 */

U NT8 heal t h; /* O=nornmal */

/* 1=no integrity monitoring */
/* 2=No info avail able */
/* 3=Don’t use this beacon */
U NT8 bitRateMde; /* Bits 0-2 */
/* 0=25, 1=50, 2=100, 3=110, 4=150, 5=200, 6=250, 7=300%*/
/* bit 4= nodul ation 0= MBK, 1= FSK */
/* bit 5= SYNC type 0= Async, 1= sync */
/* bit 6= broadcast coding, 0= no coding, 1= FEC coding*/
} DGPSAl nTType;

Return Value

The MI_GetDgpsAlm function returns SUCCESS (0) if DGPS amanac can be
retrieved else FAILURE (-1).

Notes
There is no check to see that the entered argument value for entry is within the number

of currently available almanac entries. If thisis the case, the provided structure are not
modified.

MI_GetDgpsCorrAge

Description

Function to get the age of the current set of differential corrections.

Module Interface Details C-13

1]
o

Prototype

VWERR M _Get DgpsCorr Age (fl oat *pAge);

Returns

SUCCESS (0) if DGPS correction age can beretrieved else FAILURE (-1).

Arguments
Par ameter Description
pAge Pointer for value of differential correction age.

MI_GetDgpsBeacon
MI_SetDgpsBeacon

Description

This Module Interface function is provided to get/set the current parameters of the
internal beacon receiver. The information is passed in or out into the structure
provided. This includes the beacon frequency and the bit rate.

Prototype

VERR M _Get DgpsBeacon(DGPSI _PARAMS * pDat a)
VWERR M _Set DgpsBeacon (I NT32 Freq, |NT8 BitRate)

C-14 SRFstarlle System Development Kit User’s Guide—Part 1 — Software—May 2002

O
1]

Arguments (MI_GetDgpsBeacon)

typedef struct

{
BOOL16 AutoFrequency; /* TRUE if there is frequency auto scan node, FALSE otherw se. */
BOOL16 Aut oBit Rat e; /* TRUE if there is bit rate auto scan node, FALSE ot herw se. */
I NT32 ReceiverFreqHz; /* Receiver frequency in Hz. */
I NT16 ReceiverBitRateBPS; /* Receiver bit rate in bps. */

BOOL16 Signal Validity; /* returns TRUE if a valid DGPS signal is being received,
FALSE ot herwi se */

I NT32 Signal Magni tude; /* Returns a 32-bit integer corresponding to the signal |evel */

INT16 Signal Strength_dB; /* returns signal strength in dB uV/ m(calibrated for
CSI H-field beacon antennas, for both CSI and Si RF RF sections).*/

INT16 SNR dB; /* Currently, returns 0. but in later versions will return an SNR estimate */

FLOAT Prf; /* returns the percentage of correctly processed words. This is the
mai n indi cator of the signal reception quality. */

} DGPSI_PARAMS;

Arguments(M _Set DgpsBeacon)

Par ameter Description

Freg Freguency you want to set (in Hz).
BitRate Bit rate you want to set (in bps).
Return Value

The MI_GetDgpsBeacon function returns FAILURE (-1) if the frequency is smaller
than the minimum beacon frequency or greater than the maximum beacon frequency
OR if the bitrate is different than 25, 50, 100, or 200. Otherwise, the frequency and
bitrate are used to set the internal DGPS beacon receiver and SUCCESS (0) is
returned.

Note

If you want to auto scan a parameter, pass zero value for it.
MI_GetDgpsSpecialMsg

Description

Module Interface function that retrieves the last message sent in an RTCM type 16
input message. The RTCM type 16 was designed to allow for the encapsulation of a
text message inside the RTCM protocol. The function enters a null terminated string
into the user provided buffer buf. The buffer must be at least 91 character long to
provide for the longest possible returned string.

Module Interface Details C-15

1]
o

C-16

Prototype

VWERR M _Get DgpsSpeci al Msg(char buf[91])

Arguments

A buffer to be filled by the contents of the last type 16 message. The largest message
size is 90 bytes according to the RTCM specification. The buffer will be null

terminated.

Return Value

SUCCESS (0)

MI_GetDgpsSationlD

if the settings are accepted else FAILURE (-1).

Description

Function to obtain the ID of the last/current station that is broadcasting the current

differentia col

Prototype

rrections.

VWERR M _Get DgpsStationl D (I NT16 *pDat a);

Arguments

Par ameter Description

pData Pointer for ID of differential station broadcasting current or
last used corrections.

Return Value

SUCCESS (0) if the DGPS station ID can beretrieved else FAILURE (-1).

MI_GetDgpsSationPos

Description

Function to obtain the location of the differential station that is broadcasting the
currently used (or last used) set of GPS corrections.

SRFstarlle System Development Kit User’s Guide—Part 1 — Software—May 2002

Prototype

VWERR M _Get DgpsSt ati onPos (doubl e ecef Pos[3]);

Arguments

Parameter

Description

ecefPos[3]

A vector of three doubles that contain the WGS84 ECEF

position of the current differential correction station.

Return Value

SUCCESS(0)

MI_GetDopMask
MI_SetDopMask

Module Interface Details

Description

Functions to get/set the Dilution of Precision (DOP) mask for the position output. The
DOP is a geometric figure of merit based on the direction cosine matrix.

Prototypes

WERR M _Get DopMask (M _DOP_MASK *pDat a) ;
VERR M _Set DopMask (M _DOP_MASK *pDat a) ;

C-17

1]
o

Arguments

typedef struct _M _DOP_NMASK
{

U NT8 Mbde;

Ul NT8 GDOP_Th;

Ul NT8 PDOP_Th;

Ul NT8 HDOP_Th;
} M _DOP_MASK;

Par ameter Description
Mode 0 = auto PDOP/HDOP
1 =PDOP
2 = HDOP
3 = GDOP
4 = never
GDOP_Th GDOP threshold
PDOP_Th PDOP threshold
HDOP_Th HDOP threshold
Returns

The MI_SetDopMask function returns SUCCESS (0) if the settings are accepted else
FAILURE (-1). The MI_GetDopMask function returns SUCCESS (0) if the DOP mask
can be retrieved else FAILURE (-1).

MI_GetElevMask
MI_SetElevMask
Description

Functions to get/set the satellite elevation mask angle for either tracking or navigation.
Satellites at a lower elevation than the corresponding mask angle are not
tracked/included in position solution.

Prototypes

VERR M _Get El evMask (M _ELEV_MASK *pDat a) ;
VWERR M _Set El evMask (M _ELEV_MASK *pDat a) ;

C-18 SRFstarlle System Development Kit User’s Guide—Part 1 — Software—May 2002

O
1]

MI_GetEph
MI_SetEph

Module Interface Details

Arguments

typedef struct _M _ELEV_NMASK
{

INT16 Trk;

I NT16 Nav;
} M _ELEV_MASK;

Par ameter Description

Trk Mask for tracking (in /10 degree).
Nav Mask for navigating (in 1/10 degree).
Returns

The MI_SetElevMask function returns SUCCESS (0) if the settings are accepted else
FAILURE (-1). The MI_GetElevMask function returns SUCCESS (0) if the DOP mask
can be retrieved else FAILURE (-1).

Description

Functions to get or set the available current satellite ephemeris data.

Prototypes

WERR M _Get Eph (M _PACKED EPH *pDat a);
WERR M _Set Eph (M _PACKED_EPH *pDat a) ;

Arguments

typedef struct _M _PACKED EPH
{

U NT16 subframe[3][15];
} M _PACKED_EPH;

Par ameter Description
subframe Subframe of ephemeris data.
Return Value

The MI_SetEph function returns SUCCESS (0) if the settings are accepted else
FAILURE (-1). The MI_GetEph function returns SUCCESS (0) if ephemeris data can
be retrieved else FAILURE (-1).

C-19

1]
o

C-20

Notes

Data consisting of 45 16-bit unsigned integers that make up 3 subframes of data with
each consisting of 15 unsigned 16-hit integers. This data is the ephemeris subframe
data collected from the 50 bps data stream, and compressed by packing each subframe
from 10 subframe words (32 bits/word) into 15 words (16 bits/word) with the tim and
parity words stripped off. For data packing details, see CSTD. C.

MI_GetEStGPSTime

Description

Function to get the estimated GPS time of the measurements that are used in the
current navigation solution. The result is given in milliseconds.

Prototype

VWERR M _Get Est GPSTi ne (Ul NT32 *pDat a);

Arguments

Par ameter Description

pData Pointer for return value of GPS time of the last
measurement set that was used in the navigation solution.

Return Value

TheMI_GetEstGPSTime function returns SUCCESS (0) if the estimated GPStime can
beretrieved else FAILURE (-1).

MI_GetLPAcgParams
MI_Setl PAcgParams

Description

The user may set or get the Low Power acquisition parameters through a call to
M _Set LPAcqPar ans() or M _Get LPAcqPar ans() . See Chapter 9, “Low
Power Operation” for more details.

SRFstarlle System Development Kit User’s Guide—Part 1 — Software—May 2002

O
1]

Prototypes

VWERR M _Get LPAcqParans (M _LP_ACQ PARAM *pDat a) ;
VERR M _Set LPAcqPar ams (M _LP_ACQ PARAM *pDat a) ;

Arguments

typedef struct _M _LP_ACQ PARAM

{

U NT32 MaxAcqTine; /* in mlliseconds */
U NT32 MaxOFfTinme; /* in mlliseconds */

} M _LP_ACQ PARAM

Par ameter Description

MaxAcqTime When TricklePower is enabled, MaxAcqTime (in ms) is the
maximum allowable interval from the start of a
TricklePower cycle to the time a valid position fix is
obtained from navigation. If this time elapses and no fix is
obtained, the receiver is deactivated for up to MaxOffTime,
and when the receiver reactivates, a hot start is commanded.
The integer must be in multiples of 1000 ms. The smallest
allowable value is 1000 ms. There is no upper limit.

MaxOffTime The longest period (in ms) for which the receiver will
deactivate due to the MaxAcqTime timeout. The actual
deactivated period may be less if the user-specified duty
cycle (OnTime/ Lplnterval) can be maintained. It must be a
positive number. The smallest allowable value is 1000 ms.
The largest allowable value is 1800000 ms (i.e., 1800
seconds, or 30 minutes.)

Return Value

VEERR is a SIRF type defined in stdtype.h; it has the values SUCCESS or FAI LURE.
The function returns FAI LURE only if TricklePower is not supported by the board on
which the software is running. The M _Get LPAcgPar ans function returns
SUCCESS (0) if the low power parameters can be retrieved else FAI LURE (-1).

MI_GetLowPower
Ml _SetlowPower

Module Interface Details

Description

Function to get or set the Low Power modes of the receiver, including TricklePower
and Push-to-Fix. See Chapter 10, “User Tasks, ASIC Interrupts, and the Scheduler” for

more details.

C-21

1]
o

Prototypes

VWERR M _Get LowPower (M _LP_PARAM *pDat a) ;
VERR M _Set LowPower (M _LP_PARAM *pDat a) ;

Arguments

typedef struct _M _LP_PARAM

{
I NT16 PushToFi x;
I NT32 OnTi ne; /* in mlliseconds */
I NT32 LPInterval; /* in mlliseconds */
BOOL User TasksEnabl ed;
I NT32 UserTasklnterval; /* in nilliseconds */
BOCOL Pw Cycl i ngEnabl ed;

} M _LP_PARAM

Par ameter Description

PushToFix 0 = Disable Push-to-Fix.

1 = Enable Push-to-Fix.

(For Push-to-Fix to be enabled, Pwr Cycl i ngEnabl ed
must be TRUE and OnTi me = 200, LPI nt er val = 1000.)

OnTime Must be a multiple of 100 (if not, it is rounded up to the
nearest multiple of 100). OnTi ne must be greater than or
equal to 300 ms.

LPInterval Must be an integer value greater than or equal to 1000
(i.e., 1 second). LPI nt er val does not need to be a
multiple of 100.

UserTasksEnabled FALSE = Disable user tasks.

TRUE = Enable user tasks.

(User must provide atask function as described in
Chapter 11, “DGPS Operation.”)

UserTasklnterval Period at which user task is to be scheduled. You must
verify that interval is large enough that the previous user
task completes before the next one is schedul ed.

PwrCyclingEnabled TRUE = Enable TricklePower.
FALSE = Disable TricklePower.

Return Value

VEERR is a SIRF type defined in stdtype.h; it has the values SUCCESS or FAI LURE.
The function returns FAI LURE if TricklePower is not supported by the board on which
the software is running. It also returns FAI LURE if the OnTime is <200 ms. The
MI_GetLowPower function returns SUCCESS (0) if the low power parameters can be
retrieved else FAILURE (-1).

C-22 SRFstarlle System Development Kit User’s Guide—Part 1 — Software—May 2002

O
1]

Notes

1

To deactivate TricklePower, the parameter Pwr Cycl i ngEnabl ed must be set to
FALSE. If Pwr Cycl i ngEnabl ed is FALSE, the parameters OnTi me and
LPI nt erval areignored.

. To activate TricklePower, set Pwr Cycl i ngEnabl ed to TRUE, and set OnTi e

and LPI nt er val to the desired OnPeriod and TricklePowerlnterval, respectively.
(These quantities are defined in “TricklePower” on page 9-1.) Both quantities must
be integer values with units of milliseconds. The PushToFi x parameter must be
set to O, (i.e., Push-to-Fix disabled, when TricklePower is TRUE).

If invalid parameters are supplied, they are ignored, and TricklePower operation is
disabled. When enabling/disabling TricklePower, the User task settings can be
obtained by a call to Ul _Get User TaskPar am() which returns

User TasksEnabl ed and User Taskl nt er val . To set these values and enable
user tasks, see Chapter 10, “User Tasks, ASIC Interrupts, and the Scheduler.” User
tasks can be enabled or disabled independent of TricklePower or Push-to-Fix.
Unless the user has supplied a user task as explained in that section, the parameter
User TasksEnabl ed must be set to FALSE. In this case, the

User Taskl nt er val parameter is ignored.

MI_GetNavDops

Module Interface Details

Description

Function to obtain the Dilution of Precision (DOP) values for the current navigation
solution. The DOP values represent the geometric merit of the current satellites being
tracked.

Prototype

VERR M _Get NavDops (M _DOPS *pDat a) ;

C-23

1]
o

Arguments
typedef struct
{
double GDOP; /* Geonetric Dilution of Precision */
double HDOP; /* Horizontal Dilution of Precision */
doubl e PDOP; /* Position Dilution of Precision */
double TDOP; [/* Tine Dilution of Precision */
doubl e VDOP; /* Vertical Dilution of Precision */
BOOL maskExceed;
} M _DOPS;
Par ameter Description
maskExceed High if the current DOPs output by the navigation solution
are higher than the current DOP mask.
Returns
TheMI_GetNavDopsfunction returns SUCCESS (0) if the DOPs can beretrieved else
FAILURE (-1).
MI_GetNavFom
Description

This function is somewhat misnamed. It is supposed to return a figure of merit but
instead returns a value indicating that the current position fix has been validated or that
it has timed out.

Prototype

VERR M _Get NavFom (Ul NT8 *pDat a) ;

C-24 SRFstarlle System Development Kit User’s Guide—Part 1 — Software—May 2002

O
1]

Arguments

Parameter

Description

pData

0x00 = Solution has not been validated.

0x02 = Solution has been validated.

0x04 = Solution has timed out for dead reckoning (degraded
mode).

0x08 = Velocity is valid.

Returns

TheMI_GetNavFom function returns SUCCESS (0) if the FOM can beretrieved else
FAILURE (-1).

MI_GetNavinit
MI_SetNavlnit

Description

Function to get/set the navigation initialization parameters. Used as a set function that
restarts the receiver in one of the various reset modes (hot start, warm start, cold start,
or factory start).

Prototypes

WERR M _GetNavinit (M _NAV_ INI T *pData);
WERR M _SetNavinit (M_NAV_ INIT *pData);

Arguments

typedef struct

{
I NT32

I NT32
I NT32
I NT32
Ul NT32
U NT16
Ul NT8
Ul NT8

posX;
posY;
posZ;
cl kOf f set ;

ti meOf Week;

weekno;
chnl Cnt;
reset Cf g;

} M_NAV_INT;

Module Interface Details

C-25

C-26

Par ameter

Description

posX

ECEF X position (in meters).

posY

ECEF Y position (in meters).

posZ

ECEF Z position (in meters).

clkOffset

Clock offset (in Hz).

timeOfWeek

GPS time of week (in sec.).

weekno

GPS week number.

chnlCnt

Number of channels.

resetCfg

Reset configuration bits.

Bit O: Valid initialization.

Bit 1: Clear ephemeris flag.

Bit 2: Clear memory flag.

Bit 3: Factory reset.

Bit 4: Enable debug output data for navigation library.
Bit 5: Enable SiRF debug output data.

Bit 6: Enable NMEA debug output data.

Returns

The MI_SetNavlInit function returns SUCCESS (0) if the settings are accepted else
FAILURE (-1). The MI_GetNavlInit function returns SUCCESS (0) if the NavInit can
be retrieved else FAILURE (-1).

Notes

1. MI_GetNavlnit retrieves current settings that the receiver uses upon reset in the

preceding structure.

2. MI_SetNavlinit resets parameters consist of the initial position, time, clock offset,
channel count and start mode information. By modifying members of the structure
outlined above and calling MI_SetNavinit(), software performance can be evaluated
under predetermined conditions. Set the parameters that the receiver uses upon reset
in the preceding structure. After executing this function, on the next 1-second
navigation cycle, the module is reset with the new parameters.

MI_GetNavMode

Description

This function returns the mode information of the latest position fix. This includes the
number of satellites used in solution, the type of solution and an altitude hold indicator.
The type of solution can either be a least squares type (used at start-up) or a Kalman

filter solution.

SRFstarlle System Development Kit User’s Guide—Part 1 — Software—May 2002

O
1]

Prototype

VWERR M _Get Navibde (Ul NT8 *pData);

Arguments

The value of pData has the following form:

B |l N |[A R |Y Hex Decimal |Description SiRFdemo Comment
7 |6 |5 |4 |3 |2 |1 |0 Nav Fix Type (Exclusive)
0 |0 |0 |0X00 0 No Navigation No Nav
0 |0 |1 |Oox01 1 1SV Degraded Solution 1sv
0 |1 |0 |Ox02 2 2SV Degraded Solution 2sv
0 |1 |1 |0x03 3 3SV Alt Fixed Solution 3sv
1 |0 |0 |Ox04 4 >=4 SV Full Solution 3D Fix
1 |0 |1 |0x05 5 Least Sgr 2D Fix LstSq 2D
1 |1 |0 |0Ox06 6 Least Sgr 3D Fix LstSq 3D
1 |1 |1 |ox07 7 DR Solution (0 SV) DR
TricklePower Bit (Anded)
1 +8 Trickle Power Position

0 Full Power Position

Altitude Hold Indicator (Anded)

0 |0 No Altitude Hold

0 1 + 16 Altitude Used From Filter

1 |0 + 32 Altitude Used From User

1 11 + 48 Forced Altitude (From User)
Dop Mask Bit (Anded)

1 + 64 Dop Mask Exceeded Based on Dop Mask CTRL
Dop <mask
DGPS Bit (Anded)
1 0x08 + 128 DGPS Position

SPS Position

Returns

TheMI_GetNavM ode function returns SUCCESS (0) if the navigation mode can be
retrieved else FAILURE (-1).

Module Interface Details Cc-27

C-28

MI_GetNavModeMask
MI_SetNavModeMask

Description

Functions to set or get control value for the navigation processing. Most of these
values concern operation under degraded conditions.

Prototypes

WERR M _Get NavMbdeMask (M _NAV_MODE_MASK *pDat a) ;
WERR M _Set NavMbdeMask (M _NAV_MODE_MASK *pDat a) ;

Arguments

typedef struct

{
Ul NT8 Enabl e3D;
Ul NT8 Enabl eConAl t;
U NT8 Degr adedMbde;
Ul NT8 Pad;
Ul NT8 Enabl eDR;
INT16 Altlnput;
Ul NT8 Al t Mode;
U NT8 Alt Src;
Ul NT8 Coast Ti neout ;
U NT8 Degr adedTi meout ;
U NT8 DR Ti nmeout;
U NT8 bTr kSnoot h;

} M _NAV_MODE_MASK;

SRFstarlle System Development Kit User’s Guide—Part 1 — Software—May 2002

O
1]

Par ameter Description
Altlnput Fixed altitude value in atitude hold.
AltMode Mode for atitude hold:
0 = auto
1 = aways
2 = never
AltSrc Altitude source for atitude hold:
0 = last
1 = fixed
2 = dynamic
DegradedTimeout Timeout for degraded mode.
DegradedM ode 0 = direction then time

1 = time then direction
2 = direction only

3 = time only
4 = disabled
DR_Timeout Timeout for dead-reckoning mode.
EnableDR Dead-reckoning mode:
0 = disable
1 = enable
Enable3D 0 = disable
1 = enable
bTrkSmooth Track smooth algorithm:
0 = disable
1 = enable
EnableConAlt Not used.
CoastTimeout Not used.
Pad Not used.

Returns

The MI_SetNavModeMask function returns SUCCESS (0) if the settings are accepted
else FAILURE (-1). The MI_GetNavMask function returns SUCCESS (0) if the
navigation mode mask can be retrieved else FAILURE (-1).

MI_GetNavList
Description

Function that returns a list of satellites currently used in the navigation solution. The
only valid entries are from 0 to (SVIDCnt — 1).

Module Interface Details C-29

1]
o

Prototype

WERR M _Get NavList (M _NAV_LI ST *pData);

Arguments

typedef struct
{

Ul NT8 SVI DCnt ;

Ul NT8 aSVI D[NUM_OF_CHANNELS] ;
} M _NAV_LI ST;

Returns

TheMI_GetNavList function returns SUCCESS (0) if the SV ID list can beretrieved else
FAILURE (-1).

MI_GetPosEcef

Description

Function to return the current (or last) WGS84 ECEF position solution. This is the
most common form of output for the SiRFstarlle. Since all calculations in the
SiRFstarlle are performed in WGS84, there is no extra computation needed to output
these values, unlike solutions that must be presented in other datums. All the output
values are expressed in meters.

Prototype

VERR M _Get PosEcef (ECEF *pData);

Arguments

t ypedef struct

{
DOUBLE X;
DOUBLE Y;
DOUBLE Z;

}
ECEF; /* in WS84 */

Returns

The MI_GetPositionEcef function returns SUCCESS (0) if the position data can be
retrieved else FAILURE (-1).

C-30 SRFstarlle System Development Kit User’s Guide—Part 1 — Software—May 2002

O
1]

M| GetPositionL TP

Description

This function returns the current position of the receiver expressed in latitude
[radiang], longitude [radians] and altitude [m]. The reference ellipsoid in this case is
WGS84.

Prototype

VWERR M _Get Positi onLTP (LTP *pDat a) ;

Arguments

typedef struct
{
DOUBLE Lat;
DOUBLE Lon;
DOUBLE Alt;/* should change this to H (above ellipsoid) */

}
LTP;

Returns

The MI_GetPositionLTD function returns SUCCESS (0) if the position data can be
retrieved else FAILURE (-1).

MI_GetPwrMask
MI_SetPwrMask
Description

Function to get/set the current satellite power mask for tracking or navigation
processing. Satellites with a power level below this value are not used.

Prototypes

WERR M _Get Pwr Mask (M _PWR MASK *pDat a) ;
VERR M _Set Pwr Mask (M _PWR_MASK *pDat a) ;

Module Interface Details C-31

1]
o

Arguments

typedef struct _M _PWR MASK
{

U NT8 Trk;

Ul NT8 Nav;
} M _PWR_NMASK;

Par ameter Description

Trk Mask for tracking (in dB-Hz).
Nav Mask for navigating (in dB-Hz).
Returns

The MI_SetPwrMask function returns SUCCESS (0) if the settings are accepted else
FAILURE (-1).

MI_GetRawTrkData

typedef struct

{
I NT32

I NT16
I NT16
I NT32
I NT16
I NT16
I NT32
I NT32
I NT32
I NT32
I NT16
UBYTE

C-32

Channel ;
SVI D,
State;

Description

Function is used to obtain raw tracking information for a given channel. This includes
the raw measurement data. For information on how to interpret the measurement data,
see the SRFstarlle Evaluation Kit User’s Guide.

Prototype

VERR M _Get RawTrkData (M _RAW TRK *pData, int |ndex);

Arguments

/* Channel nunber in tracking [0 to 11] */
/* Satelliteid [1 to 32] */
/* Status of the tracker channel, see Table D.3 (mask = Ox1FF) */

Bi t Nunber ;
MsecNunber ;

Chi pNunber ;
CodePhase;

Carri er Doppl er;
Measur eTi net ag;
Del t aCarri er Phase;
Sear chCnt ;

aCNo[SAMPLES_SEC] ;

/* Bits at 50 bps = 20 ns */

/* Represents time in units of nsec */

/* Represents time in units of CA chips */
/* Represents time in units of chips */

/* Doppl er frequency */

/* Measurenent time tag */

/* Current carrier phase */

/* How many times to search for a SV */

/* G No in dB-Hz */

SRFstarlle System Development Kit User’s Guide—Part 1 — Software—May 2002

O
1]

BYTE power_bad_count; /* Count of Power in 20 ns below 31 dB-Hz */
BYTE phase_bad_count; /* Count of Power in 20 ns below 31 dB-Hz */
INT16 delta_car_interval; /* Count of nms contained in delta_carrier phase */
I NT16 correl _interval; /* Correlation interval */

} M _RAW TRK;

Par ameter Description

I ndex The channel for which the above data must be output.

Table C-3 shows the tracking state of the channel. Multiple bits can be set at once with
0xBF being the highest state.

Table C-3 Tracking State of Channel

DEFINE Value in Code Bit Value Description

ACQ_SUCCESS 0x0001 Set if acg/reacq is done successfully.
DELTA_CARPHASE_VALID 0x0002 Integrated carrier phase valid.
BIT_SYNC_DONE 0x0004 Bit sync completed flag.
SUBFRAME_SYNC DONE 0x0008 Subframe sync is done.
CARRIER_PULLIN_DONE 0x0010 Carrier pull-in is done.
CODE_LOCKED 0x0020 Code locked.

ACQ_FAILED 0x0040 Failed to acquire SV.
GOT_EPHEMERIS 0x0080 Ephemeris data available.
Returns

TheMI_GetRawTrkDatafunction returns SUCCESS (0) if the raw track data can be
retrieved else FAILURE (-1).

MI_GetS"Wersion

Description

This function returns a string containing the current software version number.

Module Interface Details C-33

C-34

Protoype

VWERR M _Get SWer si on (char *pData);

Arguments

Par ameter Description

pData Pointer to character buffer where software version string is
placed.

Returns

TheMI_GetPSWVersion function returns SUCCESS (0) if the software version can be
retrieved.

MI_GetSaticNav
MI_SetSaticNav

Description

Functions to set/get the static navigation mode or determine if static mode is
enabled/disabled.

Prototypes

VWERR M _Get StaticNav (U NT8 *pDat a) ;
VWERR M _Set StaticNav (U NT8 Data);

Arguments
Par ameter Description
Data One byte:
1 = enable
0 = disable
Returns

The MI_SetStaticNav function returns SUCCESS (0) after settings are accepted. The
M _Get St ati cNav function returns SUCCESS (0) if the static mode can be
retrieved else FAILURE (-1).

SRFstarlle System Development Kit User’s Guide—Part 1 — Software—May 2002

O
1]

MI_GetThroughput

Description

This Module Interface routine is currently not implemented for the SiRFstarlle.

MI_GetGPSTime

Description

This function returns the current GPS Time. GPS time is represented as the total time
since 01/06/80. This is given as a number of weeks and the time of week (TOW) in
seconds. The actual week number rolls over every 1024 weeks which occurred in
09/1999. The value returned by this function is actually an extended week number and
is the total number of weeks since 01/06/80 (i.e., it is larger than 1024).

Prototype

WERR M _Get GPSTi ne (M _GPS_TIME *pDat a) ;

Arguments

typedef struct

{
INT16 WVKNum

DOUBLE TOW
} M _GPS_TIME;

Returns

The MI_GetTimeGPS function returns SUCCESS (0) if the GPS time can be retrieved
else FAILURE (-1).

MI_GetTrkData

Description

Function returns the tracking state of a series of channels. Verify that the starting
channel number (Chnl) plus the number of channels to output (Cnt) is not greater
than 11.

Module Interface Details C-35

C-36

Prototype

VWERR M _Get TrkData (M _TRACK DATA *pData, int Chnl, int Cnt);

Arguments

typedef struct
{

INT16 SVID;

DOUBLE Azi mut h;

DOUBLE El evati on;

INT16 State;

UBYTE AvgCNo;

UBYTE aCNo[SAMPLES SEC]; [/* SAMPLES SEC currently 10 */
} M _TRK_DATA;

Par ameter Description

Chnl Channel number at which to start outputting track data.

Cnt Number of channels for which to output data, starting at
Chnl.

Returns

TheMI_GetTrkDatafunction returns SUCCESS (0) if thetrack state can beretrieved else
FAILURE (-1).

Notes

To output the data for one channel, use a function call like the following wherei is the
channel of interest (0 to 11).

M _Get TrkDat a(& rkdata, i, 1)

To output data for all channels, use:

M _TRACK_DATA trkdat a[NUM OF CHANNELS] ;
M _Get TrkData ((M _TRK_DATA *) &rkdata, 0, NUM OF CHANNELS)

This cycles from 0 to 11 and output the tracking data for each satellite into an array
element of trkdata.

SRFstarlle System Development Kit User’s Guide—Part 1 — Software—May 2002

O
1]

Ml GetTrkSatelList

Description

This function returns the tracking state for all of the channels.

Prototype

VWERR M _Get TrkStateList (M _TRK STATE LI ST *ptslist)

Argument

t ypedef struct

{
I NT16 aStat e[NUM OF_CHANNELS]; /* Currently NUM OF CHANNELS =12 */

} M _TRK_STATE_ LI ST;

Returns

The MI_GetTrkStateL ist function returns SUCCESS (0) if the tracking states can be
retrieved else FAILURE (-1).

Ul_GetUartClkRate

Module Interface Details

Description

This function gets the current oscillator frequency for the purpose of setting the proper
Baud rate in the UART_A_BAUD register (0x80030008) or UART_B_BAUD register
(0x80030018). The clock frequency is set to the GPS, ACQ or Externa clock sources.
The GPS and ACQ clocks are generated by the RF section and are the same regardless
of board type. The external clock valueis set in UI_MSG.C and is based on the board
type, either SDK, S2AR or Undefined. If an external crystal is attached that is not at
the default value of 25 MHz, you must change the #DEFINE SDK_CLOCK_FREQ,
S2AR_CLOCK_FREQ and DEFAULT_CLOCK_FREQ values. These values are given
in Hz. The clock divider for the Baud rate is calculated correctly regardless of the
external clock frequency. If you change the external clock, it might be necessary to
change the number of wait states for each chip select. See Chapter 13, “GPIO Lines,
Throughput and Wait States’ for more details.

Prototype

VERR Ul _Get Uart d kRat e(int *cl kRat e)

Arguments

The CPU clock value in Hz. This value can currently have the following values.

C-37

C-38

MI_GetUTC

#define GPS_CLOCK_FREQ 49107000L
#def i ne SDK_CLOCK_FREQ 25000000L
#define S2AR_CLOCK_FREQ 25000000L

#def i ne DEFAULT _CLOCK_FREQ 25000000L

Parameter Description
clkRate The CPU clock value in Hz.
Returns

TheUl_GetUartClkRate function returns SUCCESS (0) if the clock rate can beretrieved
else FAILURE (-1).

Description

This function returns the current hours, minutes, seconds, TOW and week number all
corrected for the UTC parameters received in subframe four of the navigation message.
If UTC correction parameters have not yet been decoded from the 50 bps satellite
navigation information, the routine returns GPS time in the passed variables (since this
is the best information available).

Prototype

VWERR M _Get UTC(I NT16 *pHrs, | NT16 *pM ns, doubl e *pSecs, | NT16
*pVWkNum doubl e *pTOW ;

Arguments

Par ameter Description

pHrs Number of hours in the day (corrected for UTC if possible).

pMins Number of minutes in the hour (corrected for UTC if
possible).

pSecs Number of seconds in minute (corrected for UTC if
possible).

pWkNum Number of GPS weeks (corrected for UTC).

pTOW GPS Time of Week adjusted for UTC leap seconds if
possible.

Returns

A return of SUCCESS indicates that the best available time was returned. If time can
not be retrieved, it returns FAILURE.

SRFstarlle System Development Kit User’s Guide—Part 1 — Software—May 2002

O
1]

MI_GetVel Ecef

Description

Function returns the current WGS84 ECEF velocity vector.

Prototype

VWERR M _Get Vel Ecef (VECEF *pDat a);

Argument

t ypedef struct

{
DOUBLE VX;

DOUBLE Vy;
DOUBLE Vz;

}
VECEF;

Returns

The MI_GetVelEcef function returns SUCCESS (0) if the velocity can be retrieved else
FAILURE (-1).

MI_GetVelNed

Description

Outputs the current velocity vector in North, East and Down components.

Prototype

WERR M _Get Vel Ned (VNED *pDat a)

Argument

typedef struct
{
DOUBLE Vn;
DOUBLE Ve;
DOUBLE \Vd;

}
VNED;

Module Interface Details C-39

1]
o

C-40

Returns

The MI_GetVelNed function returns SUCCESS (0) if the velocity can be retrieved else
FAILURE (-1).

MI_GetGSP\Version

Description

This function returns the internal version of the GSP chip.

Prototype

VERR M _Get GSPVersi on (char *pData);

Arguments

Par ameter Description

pData Pointer to a buffer that receives the GSP version string. The
GSP2e chip returns GSP2.0.

Returns

TheMI_GetGSPVersion function returns SUCCESS (0) if the version of the GSP chip
can beretrieved.

MI_GetVisList

Description

Function returns the current satellite list. A visible list may not be available until first
acquisition. The azimuth and elevation for each satellite is not correct until afirst fix is
generated. The visible list does not contain any unhealthy satellites.

Prototype

VWERR M _GetVisList (M_WVIS LIST *pData);

Arguments

typedef struct

{
I NT16 SVI D, /* sat PRNid */

doubl e Azi mut h;

SRFstarlle System Development Kit User’s Guide—Part 1 — Software—May 2002

O
1]

doubl e El evati on;
} M _VI SI BLE;

t ypedef struct

{
Ul NT8 SVIDCnt; /* nunber of valid entries in aVis[] el enent*/
M _VI SI BLE aVi s| MAX_SVID CNT]; /* visible sat info */

} M_MS_LIST,;

Returns

TheMI_GetVisList function returns SUCCESS (0) if thevisiblelist can beretrieved else
FAILURE (-1).

MI_SetComm

Module Interface Details

Description

Function to set the serial communication parameters for a given protocol (independent
of port). The function can also be used to reset the receiver so the new settings will
have effect.

Prototype

VERR M _Set Comm (Ul NT8 Ul _ProtoSrc, void *pParanms, BOOL
blnitialize);

C-41

1]
o

Arguments
typedef struct _UARTParanms /* fromuart.h */
{

Ul NT32 baud; /* baud rate */

U NT8 bits; /* data bits */

U NT8 stop; /* stop bits */

U NT8 parity; [* parity */

U NT8 pado; /* not used */

} UARTPar ans;

Par ameter Description

Ul_ProtocSrc Ul protocol to be changed (finds the current port that this
protocol is active on).

0 = SIRF Binary

1=NMEA

2 = ASCII

3=RTCM

4 = USER1

pParams Points to data structure of type UARTParams to be set.

blnitialize Flag to initialize communication port for new settings to
take effect. If this value is TRUE, the board resets.

Returns
SUCCESS (0) if the settings are accepted else FAILURE (-1).

MI_SetDgpsCorrs

Description

This function enables the user to input a set of differential corrections directly into the
GPS Core. This might be useful for a user-defined interface that can obtain the
information from an outside source. See Chapter 12, “Adding a New User Protocol”
for more information. When this function is called, it automatically sets the DGPS
correction source as COR_SOFTWARE. Currently, this function transforms every
correction into RTCM type 1 format before submitting it to the GPS core. See the
RTCM Recommended Standard for Differential Navstar GPS Service, Version 2.2
RTCM Special Committee No. 104 document for details.

C-42 SRFstarlle System Development Kit User’s Guide—Part 1 — Software—May 2002

O
1]

Prototype

VWERR M _Set DgpsCorrs(1 NT16 SVI D, doubl e GPSTi me, doubl e PRC, doubl e
RRC, I NT16 | OD);

Arguments

Par ameter Description

SVID PRN GPS Satellite ID for the current correction.

GPSTime Time of the correction in seconds (TOW).

PRC Pseudorange correction in meters.

RRC Pseudorange rate of change in meters/second.

0D Issue of Date (I0D) of the ephemeris used to generate the
correction.

Returns

Currently always returns SUCCESS.

MI_SetNmeaProto

Module Interface Details

Description

This function attempts to find a port running a certain user interface protocol. If such a
port exists, it changes the port to NMEA protocol with the given message settings and
then reset the receiver so the new settings take effect.

Prototype

VERR M _Set NmeaProto (U NT8 Proto, M_NVEA INIT *pData);

C-43

C-44

Arguments
Par ameter Description
Proto Protocol to be found on a given port and changed to
NMEA.
typedef struct
{
U NT8 rate; /* update rate in secs */
Ul NT8 cksum /* cksum on/ of f */
} M _NVEA_CFG
t ypedef struct
{
U NT8 node; /* ON :turn debug print onin Si RF protocol */

/* OFF:no NMEA msg in SiRF protocol node */
/* ENABLE: Set receiver to NVEA node */

M _NVEA_CFG NMEACEF g[10]; /* messages are contai ned i n andNVEA[]
table */

U NT16 baudrate; /* desired baud rate */
} M_NVEA INIT;

Returns
SUCCESS (0) if the settings are accepted else FAILURE (-1).

MI_SetUiProto

Description

Function that determines if a given User Interface protocol is being used on any port

and then changes it to a new protocol. The function is hardcoded to ignore the USER1
protocol if the bChkValid flag is TRUE. It does not set a new protocol if that protocol
already exists on another port.

SRFstarlle System Development Kit User’s Guide—Part 1 — Software—May 2002

O
1]

Prototype
VWERR M _Set Ui Proto (Ul NT8 FrProto, U NT8 ToProto, BOCOL bChkVvali d,
BOCOL bReset);
Arguments
Par ameter Description
FrProto Current Ul protocol to be changed (if it is currently being
used).
ToProto New Protocol to set on the port running FrProto.
bChkValid Flag to indicate that new protocol must be checked for
validity.
bReset Flag to indicate a receiver reset, so new protocol setting can
take effect.
Return Value

SUCCESS (0) if the settings are accepted else FAILURE (-1).

MI_SetBaud

Description

Function sets the baud rate for the given Ul_Protocol only if the Ul_Protocol value is
currently active on one of the two UART ports. If one of the ports is using the given
protocol and the baud rate value is valid, then the baud rate will be set.

Prototypes

VWERR M _Set Baud (U NT8 U _ProtoSrc, UN T32 BaudRate);

Module Interface Details C-45

C-46

Arguments

Parameter

Description

Ul_ProtoSrc

Ul PROTOCOL is an enum type that is defined in the

U _I NC. Hfile. Thisvalueis used as an index into the
PROTOCOL_CFG Protocol Cfg[] array defined in
Ul_MSGC. Verify that the UI_PROTOCOL enum type value
does not exceed the elements found in Protocol Cfg[] array.
For example, if the user decides to add a new
Ul_PROTOCOL called Ul_PROTO_USERZ, then the user
must make sure this new protocol element is appended to the
ProtocolCfg[] array. The M _Set Baud routine finds the
current port that this protocol is active on.

0= UI_PROTO_SIRF

1 =UI_PROTO_NMEA

2 = UI_PROTO_ASCII

3 =UI_PROTO_RTCM

4 = Ul_PROTO_USER1

5=UI_PROTO_NULL

BaudRate

Valid baud rates are 1200, 2400, 4800, 9600, 19200, 38400,
and 57600.

Returns

The M _Set Baud function returns SUCCESS (0) if the baud rate setting is accepted

else FAILURE (-1).

MI_GPS3op
Ml _GPSSart
Description

The stop function stops all GPS tasks from running by blocking all tasks in the task
list. The stop function disables 100 ms interrupt. If user task is enabled
(TASK_PERIOD is non zero), then user task will be unblocked and allowed to run.

The start function turns the ASIC on only if the ASIC is off and then forces a Nav

Reset.

Prototypes

VWERR M _GPSStop (void);
WERR M _GPSStart (void);

Arguments

None.

SRFstarlle System Development Kit User’s Guide—Part 1 — Software—May 2002

O
1]

Returns

This function returns FAILURE if GPS reset isin process or GPS has been stopped by
the user. Otherwise it returns SUCCESS.

MI_GetEstPosError

Module Interface Details

Description

Function gets an estimated position error for a given sigma. The estimated position
error is communicated through a pointer to the given error ellipse structure. This
structure is populated with error parameters if the function is successful.

Prototypes

int M_GetEstPosError (int Sigma, tErrorEllipsePtr EPtr);

Arguments
Parameter Description
Sigma The degree of confidence that the position lies with in the

error elipse. Valid range of values are [1,10]. [1,10] denotes
1 <= Sigma <= 10.

typedef struct ErrorEllipse_ {
int GPSWeek;
doubl e GPSTow,
doubl e Lat;
doubl e Lon;
float Alt;
float Maj or Axi shMeter;
float M nor Axi sMeter;
fl oat Headi ngRad;
float Vertical ErrorMeter;
t NavPosSrc PosSrc;
} tErrorEllipse, *tErrorEllipsePtr;

Returns

The M _Get Est PosEr r or function returns an integer value ranging from [0,3]. If
0 is returned then the error ellipse structure was successfully filled with the latest
navigation state data. A failure is indicated with a return value from [1,3] where 1
indicates the Nav library was not initialized, 2 indicates the sigmavalue is out of range
[1,10], and 3 indicates the Nav state is corrupted and position source is invalid.

C-47

1]
o

M| GetPtfPeriod

MI_SetPtfPeriod

Description

Functions to get/set PushToFix cycle time.

Prototypes

VWERR M _Get Pt f Peri od(Ul NT32* pData);
VERR M _Set PtfPeriod(U NT32 Data);

Arguments

Parameter Description

PData Pointer for the Push-to-Fix cycle time in seconds.

Data Push-to-Fix cycle time in seconds. Valid range is [10,7200]
seconds. [10,7200] denotes 10 <= Data <=7200.

Returns

The M _Get Pt f Peri od function returns FAILURE(-1) if the GPS is stopped else
SUCCESS(0) indicates the Push-to-Fix cycle time was retrieved.

TheM _Set Pt f Per i od function returns FAILURE(-1) if the Push-to-Fix cycletime
is not within [10,7200] seconds else SUCCESS(0) indicates Push-to-Fix cycle time
was set.

MI_GetTestModeData
MI_SetTestMode

Description

Functions to get/set test mode data/parameters respectively.

Prototypes

VWERR M _Get Test ModeData (M _TEST_MODE *pDat a) ;
VERR M _Set Test Mbde (M _OP_MODE *pDat a) ;

C-48 SRFstarlle System Development Kit User’s Guide—Part 1 — Software—May 2002

O
1]

typedef struct _M _
{

U NT16 Mode;

Ul NT16 SVI D,

Ul NT16 Peri od;
} M _OP_MODE;

typedef struct

{
U NT16 SVid;
U NT16 peri od;

Arguments
OP_MDDE

/* OpMode: 0 = Nornml, Ox1E51 = Test, Ox1E52 - Test2, Ox1E53 -Test3 */
/[* SVid to search for (in test nopde) */

/* output nmessage period (test node) */

/* fixed SVid to search for on all channels */
/* nunber of seconds statistics are accunul ated over */

U NT16 bit SynchTi ne; /* time to first bit synch */

Ul NT16 bit Count;

/* Count of data bits canme out during a period */

U NT16 poor StatusCount; /* Count of 100ms periods tracker spent in any status < 3F */
U NT16 goodStatusCount; /* Count of 100ns periods tracker spent in status 3F */

U NT16 parityErrorCount;/* Nunber of word parity errors */

Ul NT16 | ost VCOCount ; /* number of msec VCO | ock | oss was detected */

/* follow ng menbers added for testnode |l */

U NT16 frameSynchTine; /* tine to first frane synch */

I NT16 cNoMean;
I NT16 cNoSi gng;

/* ¢/No nean in 0.1 dB-Hz */
/* ¢c/No sigma in 0.1 dB */

I NT16 cl ockDrift; /* clock drift in 0.1 Hz */
I NT32 cl ockOF f set; /* clock offset in 0.1 Hz */

/* for bit test

at a high c/no */

I NT16 badlKhzBitCount; /* bad bit count out of 10,000 (10 seconds * 1000 bits) */

| NT32 absl 20ns;
I NT32 absQlns;
I NT32 rsvdi;
I NT32 rsvd2;
I NT32 rsvd3;

} M _TEST_MODE;

Returns

Module Interface Details

/* phase noise estimte |20nms sunt/
/* phase noi se estinmate QLns sunt/

The M _Get Test MbdeDat a function returns FAILURE(-1) if no test datais
available else returns SUCCESS(0) if test datais available.

The M _Set Test Mbde function returns SUCCESS(0) if test mode parameters are
set.

C-49

1]
o

MI_GetUser DRTimeout
MI_SetUser DRTimeout

Description

Functions to get/set user dead reckoning timeout value.

Prototypes

U NT32 M _Get User DRTi meout (void);
voi d M _Set User DRTi neout (Ul NT32 | nput);

Arguments

Parameter Description

Input Dead reckoning timeout value (int value) in seconds.
Returns

The M _Get User DRTi nmeout function returns the user dead reckoning timeout
value.

The M _Set User DRTi meout function returns nothing.

MI_GetUserParams

MI_SetUserParams

Description

Functions to get/set user task parameters.

Prototypes

VWERR M _Get User Param (M _USER_PARAM *pDat a) ;
VERR M _Set User Param (M _USER_PARAM *pDat a) ;

C-50 SRFstarlle System Development Kit User’s Guide—Part 1 — Software—May 2002

O
1]

Arguments

typedef struct _M _USER PARAM

{
BOOL User TasksEnabl ed;

I NT32 User Tasklnterval; /* in mlliseconds */
} M _USER_PARAM

Returns

The M _Get User Par anms function returns SUCCESS(0) if user task parameters
were set, else returns FAILURE(-1) if GPS has stopped (no GPS tasks are running).

The M _Set User Par ans function returns SUCCESS(0).

MI_LpDbgOutput

Description

Function to output debug messages for Low Power. Outputs message of continuous
power, Push to Fix, or Trickle Power enabled. Outputs message of user task enabled or
disabled.

Prototypes

VWERR M _LpDbgQut put (voi d);

Returns
Function returns SUCCESS(0).

MI_GetUtcOffset

MI_SetUtcOffset

Module Interface Details

Description

Functions get/set UTC offset.

C-51

1]
o

Prototypes

int M_GetUcOfset(void);
void M_SetUtcOfset(int Input);

Arguments

Parameter Description

Input UTC offset value (int value) in seconds.
Returns

The M _Get Ut cOf f set function returns the UTC offset value.

MI_SetShasPrn

Description
Function that sets SBAS (Satellite Based Augmentation System) prn value.

Prototypes

VWERR M _Set SbasPrn(int prn);

Arguments

Parameter Description

prn Prn value of the SBAS satellite of interest. If prn = 0, then
automatic selection of SBAS satellite is performed. Valid prn
are values: 0,[120,138]. [120, 138] denotes 120 >= prn <=
138.

Returns

TheM _Set SbasPrn function returns SUCCESS (0) if the prn input is O or avalue
greater or equal to 120 and a value smaller or equal to 138. Otherwise FAILURE (-1)

is returned.

C-52 SRFstarlle System Development Kit User’s Guide—Part 1 — Software—May 2002

Error EllipseFunctions D

Computation of Navigation Error Ellipse

The navigation error ellipse is an estimation of the sensitivity of the navigation
solution to errors in the measurements. It is derived from the elements of the system
covariance matrix. Traditionally the covariance matrix from the Dilution of Precision
(DOP) computation is used because it is instantaneous and reflects only the
measurements used in the corresponding navigation computation. Alternatively, the
covariance matrix from the Kalman filter can be used, but that covariance matrix is
weighted and is a function of navigation history.

The trace of the DOP covariance matrix represents the expected error sensitivity in the
north, east, up and time axis. The off diagonal elements are functions of the cross-
correlation between the errors in primary directions. The 2-D navigation error elipseis
the uncorrelated representation of the system variances in the horizontal plane. It is
obtained from the north, east and north-east elements of the DOP covariance matrix.
The ellipse is described by three parameters, the lengths of the major and minor axis
and the orientation of the major axis with respect to north. The uncorrelated covariance
matrix, U, is obtained from the correlated DOP covariance matrix C by matrix-rotating
U so that diagonal elements become zero. If R is the rotation matrix then:

U=R*C*RT
where
C:E Vlz\lorth VZNorth_EastB
@’ZNorth_East Véast g
R_I]boskr) —-snr 0
- 0. [l
[ﬁm(r) cos(r)D
and
U 00O
u=g ™ i
00 U,[Q

D-1

D-2

r=_ [

The required rotation angle, r, is computed from the components of the covariance
matrix C.

sin(er)= 20cos(r)Osin(r)= 2% C, =2 v Rorth_East

cos(2r)=cost P -sin(P =c,, -C,, =v2 . V2,

and

an- -n(zr)Eletan‘l ?DCOS(Y)DS'n(r) Nonh East H: 1 —1% 12 %
%os(Zr) 2 cosr P —sin(r P Hvz —vZ H 2 -C,

North

Once the ellipse’s orientation, r, is determined, the uncorrelated matrix, U, can be
computed from the correlated DOP matrix, C.

Uy, = ‘Cn Ccos(r +C,, Dsin(r)? -20C,, Ceos(r) sin(r%

Uy, = ‘cn Osin(r)? + €, Ocos(r)2 +20C,, Ceos(r) sin(q

The semi-major axis of the error ellipse is the larger of Uy; and U,,, and the semi-
minor axis is the smaller of the two. If Uy, is the larger axis then the rotation angle for
the ellipse is r plus 90 degrees.

If Ujp 2 Up

Semi-magjor = Uy
Semi-minor = Uy,
Rotation angle = r
Elseif Uy > Uy
Semi-major = Uy,
Semi-minor = Uy,

Rotation angle = r+90 degrees.

SRFstarlle System Development Kit User’s Guide—Part 1 — Software—May 2002

File Organization

Sart-Up

GPSCore

FileDescriptions E

The following section provides a brief description of the source files included in the
SiRFstarlle SDK. First, the files are broken up according to the software architecture
diagram (Figure 1-2 on page 1-4). Thisis followed by the file descriptions ordered
alphabetically.

The grouping of the files following is not exact since some files may have multiple
purposes. The intent is to familiarize the reader with the files that can be associated
with each part of the architecture.

arm_irg.c armerror.c main.c
armstart.s clkadj.s uiconfig.c
armmtest.c iono.h nidefalt.h
armreset.c intrface.h rtc.c
dgpstype.h navconst.h

ephdefs.h nisdk.c

E-1

1]
m

Tasking
asic_if.c csection.s schedule.c
asic_isr.c sch_icd.h

UART
asicuart.c msgmgr.h uartbuf.h
asicuart.h protocol.h umanager.c
list.c uart.c umanager.h
list.h uart.h umconfig.c
msgmar.c uartbuf.c umconfig.h

User Interface

protocol.h ui_nmea.h ui_userl.c
ui_ascii.c ui_rtcm.c ui_userl.h
ui_ascii.h ui_rtcm.h user.c
ui_if.h ui_sirf.c user_if.h
ui_msg.c ui_sirf.h
ui_nmea.c ui_sram.c

Memory
asic _icd.h ram.sct ui_sram.c
cache.c sdram.c update.c
cre.c sram.c
flash.sct sram_icd.h

E-2 SRFstarlle System Development Kit User’s Guide—Part 1 — Software—May 2002

m
1]

Module Interface (including utility files)

asic_if.c nl_if.h trk_if.h
asic_if.h ntsc_if.h ui_if.h
bit_if.h rtc_if.h uiconfig.c
dgps_if.h rxm_if.h user_if.h
exec_if.h sd_if.h userinit.c
gpstype.h sio_dbug.h utc.h
init_if.h sio_if.h util_if.h
Ip_if.h stdtype.h waas _if.h
mi_if.h swt_if.h

Individual File Descriptions

arm_irg.c
armerror.c

armmtest.c

armreset.c

armstart.s

asic_icd.h
asic if.c

asic_if.h

asic_isr.c

File Descriptions

Contains IRQ initialization. Function called from main.c. Interrupts
to be enabled at startup could be added to this file.

Contains routines to handle exceptions. Called from the embedded
library.

Memory test code, not used currently.

The last stop before the board executes a soft reset. User resets must
be called through MI_ForceReset.

Assembly file. Contains code entry point. Sets up exception vector
table and provides assembly handlers that can call C-code for various
exceptions. Also sets up stack pointers and initializes memory.
Processor starts up in 32 bit ARM instruction mode, the exception
handlers must branch to 16 bit THUMB instructions since this is
what all the C-code is compiled for. After reset, this file eventually
branches to main() in main.c.

Contains #define values for the ASIC registers.
ASIC related functions.

Contains a few #define values along with ASIC related functions
prototypes and macros.

Most functions in this file are not used with the GSP2 hardware
tracker. The primary function in this file is asiclSR(). Thisis called
by the IRQ exception handler through SCH_ISR(). It is the asicISR()
function that determines the source of every interrupt enabled in the
standard software and calls the appropriate handler. Note that there
are two interrupt levels in the ARM, afast interrupt (FIQ) and a
normal interrupt (IRQ). The software only uses the IRQ interrupt so
multiple sources for this interrupt are possible. When an interrupt is
received, it must be acknowledged.

E-3

E-4

asicuart.c

asicuart.h

bit_if.h

cache.c

ck.c
cksum.exe

clkadj.s

Crc.c

csection.s

dgps.key
dgps_if.h

dgpstype.h

ephdefs.h

exec_if.h

flash.sct

gpstype.h
init_if.h

intrface.h
iono.h

list.c

Contains the ISR routines for the GSP2 UARTSs. Also contains code
to initialize the UART structures and enable/disabled interrupts.
uartiSRHandler() is called from asiclSR() in asic_isr.c if a UART
interrupt occurs.

Contains macros and bit masks for working with the ASIC UART
registers.

Contains #defines, variables/structures, and function prototypes
associated with Bit in Test and debug.

Code to enable/disable the cache. Cache and initial acquisition are
mutually exclusive. When enabling cache, the TAG memory must be
cleared.

Not part of the GSW2 embedded software.
Not part of the GSW2 embedded software.

Assembly file. Contains two functions for switching the clock source,
one for switching to ECLK and one for GPSCLK. GPSCLK is the
default at start-up. Also includes code in these functions for setting
the proper wait states for each chip select and for selecting the clock
divisor.

Cyclic redundancy functions. Used mainly to protect battery-backed
memory. Also used by the USER1 protocol generic output.

Contains the critical section enter/exit code.
Not part of the GSW2 embedded software.

Contains prototypes, defines, and constants related to DGPS that are
used by other modules.

Contains defines and structures related to DGPS. Not for SDK
development and must not be modified.

Not for SDK development. Must not be modified.

Contains information for update.c, #defines for tasks, and prototype
information regarding intrface.c (core file).

Scatter load file for HwtFlash build.
Contains values and structures used for position calculations.

Contains #defines/enum types, variables/structures, and function
prototypes associated with initialization and start-up modes.

Not for SDK development. Must not be modified.
Not for SDK development. Must not be modified.

Functions for the formation and management of singly-linked lists
(used for UART buffering code). The UART buffering system is
managed as a series of singly-linked lists (two sets, one for each
port). The list.c functions are generic singly-linked list functions.
UART Buffer specific code is implemented elsewhere.

SRFstarlle System Development Kit User’s Guide—Part 1 — Software—May 2002

E

File Descriptions

list.h

Ip_if.h

main.c

mi_if.h

mkdefalm.exe

msgmgr.c

msgmgr.h
navconst.h

nl_if.h

nidefalt.h

nisdk.c

Defines generic linked list structures. These singly-linked list
structures are the basis for the UART buffering code. See list.c for
more details.

Must not be modified by SDK user. Function prototypes for
TricklePower operation. Of interest is the DelayMicroSeconds() and
DelayMicroSecondsl ntEnabled() functions. These offer the SDK user
a means to delay code execution by a desired number of
milliseconds. This delay is based on the Real-Time Clock (RTC).

Contains the C-entry point for the code. MAIN.C function is
branched to from armstart.s. Sets alternate functions of GPIOs, calls
user configuration code and hardware detection code. Sets source of
UART clock. Starts Nav and falls to a form of background loop.
After this, the code is interrupt driven.

Important file for Module Interface functions. Includes all the
function prototypes for the Module Interface Get and Set functions.
These functions provide the SDK user a means to obtain data from
the GPS core. There are al'so many utility functions that are provided.
Contains alist of the possible events that can be signaled by the GPS
core. Events are used as 1/0O message triggers and an event is signaled
by calling Ul_Event() in Ul_MSG.C. Also included here are the
definitions of structures used by the M1 routines.

Not part of the GSW?2 embedded software.

Functions to support input message handler architecture. The I/O
protocol architecture is set up to enable the registration of message
handlers for each active protocol. Each message handler istied to a
unique Message ID (MID) between 0 and 255. When a input message
is received (meaning the ISR recognized the termination characters),
the code eventually checks for a MID and calls the associated
message handler. If there is no associated message handler for that
MID or there has been a COM error, an error handler is called
instead.

Header file for msgmgr.c, check this file for specifics.
Not for SDK development. Must not be modified.

Some enumerated types in this file are used to set values in
NLDEFALT.H. Otherwise, this file is not intended for SDK
devel opment.

Contains default settings for the navigation core. These settings may
be changed by the user. Note that SiRF has not run full test suites on
all combinations of the values. If you change these values, it is
recommended that you verify the proper behavior with adequate
testing.

One function called at start-up that passes user variables to the GPS
core. This file must not be modified by the SDK user. Most of the
user settable #DEFINE values are contained in NLDEFALT.H and
can be changed by the user.

E-5

E-6

ntsc_if.h Not for SDK development. Must not be modified.

protocol.h Contains all the Message ID’s (MID’s) for the SiRF binary protocol.
ram.sct Scatter load file for HwtRam build.

rtc.c Contains files for manipulating, initializing and reading the RTC

registers. In general, the RTC (real-time clock) code is closely tied to
the GPS code and must be left alone. This code ensures that the RTC
accuracy is sufficient to allow for TricklePower operation. Some
functions at the bottom of the file can be used by the SDK user to
obtain time differences based on the RTC counters.

rtc_if.h Header file for RTC.C. Contains function prototypes for the functions
mentioned in the RTC.C description. To use these functions, include
this header file.

rxm_if.h Contains prototypes, defines, and structures related to receiver

manager that are used by other modules.

sch_icd.h Defines task priorities and functions associated with each task.
Closely tied to the scheduler code in scheduler.c.

schedule.c Contains the C-code IRQ interrupt handler (SCH_ISR()) that is called
from the assembly IRQ exception handler in armstart.s. SCH_ISR()
then calls asicl SR() (see asic_isr.c file for more details). Thisfile also
contains the code for implementing the scheduler (basic OS). The
function that determines the appropriate task to execute is dispatch().
There are also several access functions in thisfile that are called from
the SIRF object code. These are in place so the user can adjust the
default task priorities without breaking the SiRF object code.

sd_if.h Satellite data interface declarations.

sdram.c Contains declaration of zero-initialized data structure that is
maintained in SDRAM. This structure occupies the RAM space
directly after the first 4kB of SRAM where the battery-backed
memory is resident. The data associated with this SDRAM file is not
cleared on a soft reset. There is no reason for the SDK user to modify

this file.
sio_dbug.h Contains serial Input/Output related information used for debugging.
sio_if.h Contains serial Input/Output related information regarding

UART/Serial communication and message/buffer handling. Also
contains UART structure for UARTControl.

sram.c Contains access routines for SRAM data area.

sram_icd.h Contains #defines, variables/structures, and function prototypes
regarding SRAM data area.

ss2_sdk.mcp ARM ADS tool-chain project file.

stdtype.h Contains processor specific types (i.e. UINT32 for an unsigned long
int) that must be used in coding.

swt_if.h Contains information regarding software time.

SRFstarlle System Development Kit User’s Guide—Part 1 — Software—May 2002

E

File Descriptions

trk_if.h

uart.c

uart.h

uartbuf.c

uartbuf.h

ui_ascii.c

ui_ascii.h

ui_if.h

ui_msg.c

Contains prototypes, defines, and structures related to receiver
manager that are used by other modules.

Contains functions that are used to implement the UART buffering
scheme. The UART buffering scheme is based on a series of linked
lists. The basic singly-linked list functions are defined in LIST.C. The
specific UART buffer function pointers are typecast to these basic
functions in UARTBUF.H and LIST.H. See also LIST.C, LIST.H,
UARTBUF.C and UARTBUF.H.

Contains function prototypes for the uart code, mainly uart.c. A
pointer to this structure type (*UARTDevice) is included in the
UM Protocol Data structure declared in umanager.

This file contains the majority of global variables that are used by the
UART buffering scheme to reserve space in RAM. This space is
managed by a series of pointers arranged as a group of singly-linked
lists. Functions in the file enable external files to manipulate these
pointers and set up the data space for use in the lists. The actual
UART structures are declared in UMANAGER.C (UMProtocol Data
UMPData]NUM_UARTS]). Also check LIST.C, LIST.H, UART.C
and UARTBUFH.

This file derives the specific UART buffer class from the generic
linked list functions and structures of list.h and list.c. See uartbuf.c
for more details.

Contains the framework (shell) used for ASCII protocol.

Header file for Ul_ASCII.C. Contains function prototypes for ASCII
protocol. The ASCII protocol is not currently used in the code.

Contains the function prototypes for the Ul_MSG.C file. These files
along with UMANAGER.C form the application layer just above the
protocol specific implementation files. See Ul_MSG.C for more
details.

This file exists as a layer just above the individual protocols. There
are two sets of functions in this file. The first is a set of default
NULL functions that are assigned to each port until a specific
protocol is associated with that port. When the protocol is being
instantiated, these NULL functions are replaced by the protocol
specific functions (for SIRF binary these are in Ul_SIRF.C, for
NMEA these are in UI_NMEA.C, RTCM isin UI_RTCM.C and
USER1 isin Ul_USER1.C). The second set of functions are called
out of the GPS core and are meant to be protocol independent. This
independence is generated by using function pointers and allowing
these function pointers to be modified by specific protocols. Thisfile
also contains two handles for the UM Protocol Data structure in
UMANAGER.C, one for each UART. Note the default clock
frequency #define values are defined here so customers with different
ECLK fregquencies can set them here.

E-7

1]
m

ui_nmea.c

ui_nmeah

ui_rtcm.c

ui_rtcm.h

ui_sirf.c

ui_sirf.h

ui_sram.c

E-8

Contains most files associated directly with /O NMEA messaging.
This includes input message handlers that are registered in
NmeaOpen() (see msgmgr.c for more details). This also includes
output message handlers that create standard NMEA strings. The data
(time, position, velocity, etc.) for generating the output payload is
obtained from the GPS core using the M1_Get() functions (see
MI_ICD.H). There are also functions that are called directly from the
GPS core through Ul_MSG.C. These functions are prefaced with Ul _
and are set up as a series of function pointers. See Ul_Open() in
Ul_MSG.C for details on the redirection. The NMEA specific
functions that handle buffer transport between the application layer
and the ISR are contained in NMEAMGR.C.

Header file for ui_nmea.c. Contains default message settings and
Baud rate.

Contains routines for implementing the RTCM protocol. RTCM is an
input only protocol (receive only). Also, the data for RTCM input is
passed from the ISR to the application layer one byte at a time
instead of one buffer at a time.

Header file for Ul_RTCM.C. Several of the #define valuesin thisfile
are not currently used.

Thisfileis similar in function to UI_NMEA.C. It also includes input
message handlers and output message handlers. The input message
handlers are registered in SirfOpen() and are managed using the
functions in MSGMGR.C. The input message handlers use
MI_SetXXX() functions to set variables in the GPS core. The output
messages are triggered by Events generated in the GPS Core (i.e. a
function call to Ul_Event() in Ul_MSG.C that calls the output
function pointers for each protocol). The payload data (time, position,
velocity, etc.) for each message is obtained from the GPS core using
MI_GetXXX() functions (see MI_ICD.H). There are also functions
that are called directly from the GPS core through Ul_MSG.C. These
functions are prefaced with Ul_and are set up as a series of function
pointers. See Ul_Open() in Ul_MSG.C for details on the redirection.
The SIRF binary specific functions that handle buffer transport
between the application layer and the ISR are contained in
UI_SIRF.C.

Header file for Ul_SIRF.C. Contains some default Protocol settings
for baud rate and parity.

Functions for the manipulation of the user portion of battery-backed
SRAM. The default settings for the user portion of battery-backed
memory are set in this file. Specificaly, in the Ul_SetUiSram()
function there is a case statement for ID_INITIALIZE that sets the
default values if the battery-backed memory is determined to be
corrupt at start-up. Note that the user portion of battery-backed
memory is protected by a CRC. The Ul_SetUiSram() function can be
used to set the various elements in the structure as it re-calcul ates the
CRC before terminating.

SRFstarlle System Development Kit User’s Guide—Part 1 — Software—May 2002

M
1]

File Descriptions

ui_userl.c

ui_userl.h

uiconfig.c

umanager.c

umanager.h

umconfig.c

umconfig.h

update.c

user.c

user_if.h

This file provides two sets of functions. The first set is for
implementing a USER1 protocol while the second is for
implementing user tasks. For the USER1 protocol, this file contains
the same type of functions found in UI_NMEA.C for NMEA and for
Ul_SIRF.C for SiRF binary. Read the sections on those files for
implementation of the I/O functions through function pointers. The
Ul _UserTask() function is the function called by the scheduler when
the user tasks are activated. The user tasks are activated by setting
TASK_PERIOD to a non-zero value in the preprocessor settings. The
task priorities and associated functions are set in SCH_ICD.H. Note
that all of the code associated with the user task in the standard code
is for testing purposes and must not be enabled by the SDK user for
their own application.

Header file for Ul_USERZ1.C. Contains some default protocol settings
(i.e. Baud rate). See Ul_USER1.C for more details.

This file contains functions and a global array that determines the
hardware setup. The global array is used to determine hardware type
(S2AR, S2SDK), clock type (GPSCLK, ECLK) and Beacon type
(Internal, CSI). There is a hardware configuration routine in this file
that determines the board type based on GPIO36 and GPI014/CS2.
These values can also be hardcoded. Note the default clock offset
(DEFAULT_CLKOFFSET) can now be set in thisfile formerly found
in MI_UTIL.C.

This file along with the Ul_MSG.C file forms part of the
application layer just above the individual protocols. Many of the
functions in this file are default functions, assigned to function
pointers in the UART control structure (UM Protocol Data
UMPDatalNUM_UARTS]). Depending on the protocol, some of
these default function pointers can be overwritten to point to
protocol specific functions. The primary structure used to control
UART operation is declared here (UM ProtocolData ...).

Header file for UMANAGER.C. Contains the definition of the
UM Protocol Data structure that is used to control the UARTS.

Used in conjunction with UMANAGER.C. Mostly to manipulate
handles to the various UART control structures.

Header file for UMCONFIG.C.

This file was used in the SSI to jump to the boot loader contained in
the first section of Flash memory. The boot code for the SSII is
implemented inside the chip so this file has no relevance and is not
currently used.

Contains code associated with user tasks and other user interface
routines.

Contains #defines, variables/structures, and prototypes associated
with USER.C.

E-9

userinit.c

utc.h
util_if.h

waas if.h

Non DK Source/Build Files

E-10

ck.c

cksum.exe

dgps.key
mkdefalm.exe

nmeal00.key

Contains a few global variables that can be used to modify the
behavior of the board. The userResetDelayCount variable is used to
indicate the number of extra times that the board must attempt a
warm start before falling back to a cold start. The user PPS offset
variable is used to adjust the occurrence of the 1 PPS pulse.

Contains UTC structures.
Prototypes for utilities like GetDate, ConvertTowToUtc, GetCog, etc.

Contains prototypes, #defines, and structures related to WAAS that
are used by other modules.

Source code for cksum.exe

Microsoft C command line executable that creates NMEA checksums
from NMEA sentences.

Procomm meta key file.

Executable used to create new almanac (DEFALM.H file). Thisis
currently not supported as DEFALM.H is not provided as an SDK
file.

Procomm meta key file to send NMEA input messages.

SRFstarlle System Development Kit User’s Guide—Part 1 — Software—May 2002

2-D
3-D
A/D

Almanac

Altitude

Altitude Hold

Altitude Hold Mode

Baud

bps

C
C/A Code

CEP

Clock Error

C/No
Cold Start

Control Segment

Acronyms, Abbreviationsand
Glossary F

This appendix describes all acronyms, abbreviations, and selected terms used in this
document.

Two dimensional.

Three dimensional.

Analog to Digital.

A set of orbital parameters that allows calculation of the approximate GPS satellite positions
and velocities. A GPS receiver uses the almanac as an aid to determine satellite visibility
during acquisition of GPS satellite signals. The amanac is a subset of satellite ephemeris data
and is updated weekly by GPS Control.

The distance between the current position and the nearest point on WGS84 reference ellipsoid.
Altitude is usually expressed in meters and is positive outside the ellipsoid. In terms of the
SiRFstar Evaluation Unit, this has no bearing on the height above mean sea level.

A technique that allows navigation using measurements from three GPS satellites plus an
independently obtained value of altitude.

A Navigation Mode during which a value of altitude is processed by the Kalman Filter as if it
were a range measurement from a satellite at the Earth’'s center (WGS-84 reference ellipsoid
center).

(See bps.)
Bits per second (also referred to as a Baud rate).
Celsius, a unit of temperature.

Coarse/Acquisition Code. A spread spectrum direct sequence code that is used primarily by
commercial GPS receivers to determine the range to the transmitting GPS satellite.

Circular Error Probable. The radius of acircle, centered at the user’s true location, that contains
50 percent of the individual position measurement made using a particular navigation system.

The uncompensated difference between synchronous GPS system time and time best known
within the GPS receiver.

Carrier-to-Noise density ratio.

A condition in which the GPS receiver can arrive at a navigation solution without initial
position, time, current Ephemeris, and almanac data.

The Master Control Station and the globally dispersed Monitor Stations used to manage the
GPS satellites, determine their precise orbital parameters, and synchronize their clocks.

F-1

1]
-

dBW
DC
DGPS

Doppler Aiding

DoD
DOP
DSP
DTR
ECEF

EEPROM
EHPE
EMC
EMI

Ephemeris

EPROM
EVPE
FP

FRP

GaAs
GDOP

GMT
GPS

F-2

Decibel.

Decibel-1sometric-Circular (measure of power relative to an isometric antenna with circular
polarization).

Decibels per milliwatt.
Decibel-Watt (measure of power relative to one watt).
Direct Current.

Differential GPS. A technique to improve GPS accuracy that uses pseudorange errors recorded
at known locations to improve the measurements made by other GPS receivers.

A signal processing strategy that uses a measured doppler shift to help a receiver smoothly
track a GPS signal to allow a more precise velocity and position measurement.

Department of Defense.

Dilution of Precision (see GDOP, HDOP, PDOP, TDOP, and VDOP).
Digital Signal Processor.

Data Terminal Ready.

Earth-Centered Earth-Fixed. A Cartesian coordinate system with its origin located at the center
of the Earth. The coordinate system used by GPS to describe 3-D location. For the WGS-84
reference ellipsoid, ECEF coordinates have the Z-axis aligned with the Earth’s spin axis, the X-
axis through the intersection of the Prime Meridian and the Equator and the Y-axis is rotated
90 degrees East of the X-axis about the Z-axis.

Electrically Erasable Programmable Read Only Memory.
Expected Horizontal Position Error.

Electromagnetic Compatibility.

Electromagnetic Interference.

A set of satellite orbital parameters that is used by a GPS receiver to calculate precise GPS
satellite positions and velocities. The ephemeris is used to determine the navigation solution
and is updated frequently to maintain the accuracy of GPS receivers.

Erasable Programmable Read Only Memory.
Expected Vertical Position Error.
Floating-Point mathematics, as opposed to fixed point.

Federal Radionavigation Plan. The U.S. Government document that contains the official policy
on the commercia use of GPS.

Gallium Arsenide, a semiconductor material.

Geometric Dilution of Precision. A factor used to describe the effect of the satellite geometry
on the position and time accuracy of the GPS receiver solution. The lower the value of the
GDOP parameter, the less the errors in the position solution. Related indicators include PDOP,
HDOP, TDOP, and VDOP.

Greenwich Mean Time.

Global Positioning System. A space-based radio positioning system that provides suitably
equipped users with accurate position, velocity, and time data. GPS provides this data free of
direct user charge worldwide, continuously, and under all weather conditions. The GPS
constellation consists of 24 orbiting satellites, four equally spaced around each of six different
orbital planes. The system is developed by the DoD under Air Force management.

SRFstarlle System Development Kit User’s Guide—Part 1 — Software—May 2002

'n
1]

GPS Time

HDOP

Held Altitude

Hot Start

Hz
1/0
IF
IGRF
IODE
JPO

Kalman Filter

Km
L1 Band

L2 Band

Latitude

LLA

Longitude

LPTS

Acronyms, Abbreviationsand Glossary

The number of seconds since Saturday/Sunday Midnight UTC, with time zero being this
midnight. Used with GPS Week Number to determine a specific point in GPS time.

Horizontal Dilution of Precision. A measure of how much the geometry of the satellites affects
the position estimate (computed form the satellite range measurements) in the horizontal (East,
North) plane.

The altitude value that is sent to the Kalman filter as a measurement when in Altitude Hold
Mode. It is an Auto Hold Altitude unless an Amended Altitude is supplied by the application
processor.

Start mode of the GPS receiver when current position, clock offset, approximate GPS time and
current ephemeris data are all available.

Hertz, a unit of frequency.

Input/Output.

Intermediate Freguency.

International Geomagnetic Reference Field.
Issue of Data Ephemeris.

Joint Program Office. An office within the U.S. Air Force Systems Command, Space Systems
Division. The JPO is responsible of managing the development and production aspect of the
GPS system and is staffed by representatives from each branch of the U.S. military, the U.S.
Department of transportation, Defense Mapping Agency, NATO member nations, and
Australia.

Sequential estimation filter which combines measurements of satellite range and range rate to
determine the position, velocity, and time at the GPS receiver antenna.

Kilometer (1IKm = 1000 meters)

The 1575.42 MHz GPS carrier frequency which contains the C/A code, P-code, and navigation
messages used by commercial GPS receivers.

A secondary GPS carrier, containing only P-code, used primarily to calculate signal delays
caused by the atmosphere. The L2 frequency is 1227.60 MHz.

Halfway between the poles lies the equator. Latitude is the angular measurement of a place
expressed in degrees north or south of the equator. Latitude runs from 0° at the equator to 90°N
or 90°S at the poles. When not prefixed with letters N or S, it is assumed positive north of
Equator and negative south of Equator. Lines of latitude run in an east-west direction. They are
called paralels.

Latitude, Longitude, Altitude geographical coordinate system used for locating places on the
surface of the Earth. Latitude and longitude are angular measurements, expressed as degrees of
a circle measured from the center of the Earth. The Earth spins on its axis, which intersects the
surface at the north and south poles. The poles are the natural starting place for the graticule, a
spherical grid of latitude and longitude lines. See also Altitude.

Lines of longitude, called meridians, run in a north-south direction from pole to pole.
Longitude is the angular measurement of a place east or west of the prime meridian. This
meridian is also known as the Greenwich Meridian, because it runs through the original site of
the Royal Observatory, which was located at Greenwich, just outside London, England.
Longitude runs from 0° at the prime meridian to 180° east or west, halfway around the globe.
When not prefixed with letters E or W, it is assumed positive east of Greenwich and negative
west of Greenwich. The International Date Line follows the 180° meridian, making a few jogs
to avoid cutting through land areas.

Low Power Time Source.

F-3

m/sec
m/sec/sec
m/sec/sec/sec
Mask Angle

Measurement

MID
MHz
MSB
MSL
MTBF
Multipath Error
mv
mw
NED
NF
NMEA

NVRAM

Obscuration

OEM

Overdetermined Solution

P-Code

Parallel Receiver

PDOP

F-4

Least Significant Bit of a binary word.

Local Tangent Plane coordinate system. The coordinates are supplied in a North, East, Down
sense. The North isin degrees or radians, East in same units and Down is height below WGS84
elipsoid in meters.

Meters per second (unit of velocity).

Meters per second per second (unit of acceleration).

Meters per second per second per second (unit of impulse or “jerk”).

The minimum GPS satellite elevation angle permitted by a particular GPS receiver design.

The square of the standard deviation of a measurement quality. The standard deviation Error
Variance is representative of the error typically expected in a measured value of the quantity.

Message Identifier. In case of SiRF protocol, it is a number between 1 and 256.

Megahertz, a unit of frequency.

Most Significant Bit within a binary word or a byte.

Mean Sea Level.

Mean Time Between Failure.

GPS positioning errors caused by the interaction of the GPS satellite signal and its reflections.
Millivolt.

Milliwatt.

North, East, Down coordinate system. See LTP.

Noise Factor.

National Marine Electronic Association. Also commonly used to refer to Standard For
Interfacing Marine Electronic Devices.

Non-volatile RAM, portion of the SRAM that is powered by a backup battery power supply
when prime power is removed. It is used to preserve important data and allow faster entry into
the Navigation Mode when prime power is restored. All of the SRAM in SiRFstar receiver is
powered by the backup battery power supply (sometimes also referred to as “keep-alive”
SRAM).

Term used to describe periods of time when a GPS receiver’s line-of-sight to GPS satellites is
blocked by natural or man-made objects.

Original Equipment Manufacturer.

The solution of a system of equations containing more equations than unknowns. The GPS
receiver computes, when possible, an overdetermined solution using the measurements from
five GPS satellites, instead of the four necessary for a three-dimensional position solution.

Precision Code. A spread spectrum direct sequence code that is used primarily by military GPS
receivers to determine the range to the transmitting GPS satellite.

A receiver that monitors four or more satellites simultaneously. SiRFstar Evaluation Unit can
monitor up to 12 satellites simultaneously, due to the capabilities of the SIRF chipset it uses.

Position Dilution of Precision. A measure of how much the error in the position estimate
produced from satellite range measurements is amplified by a poor satellite geometry with
respect to the receiver antenna.

The mathematical constant having a value of approximately 3.14159.

SRFstarlle System Development Kit User’s Guide—Part 1 — Software—May 2002

'n
1]

P-P
PPS

PRN

Pseudorange

PVT
RAM

Receiver Channels

RF
RFI
ROM
RTCA
RTCM

SA
Satellite Elevation

SEP

Sequential Receiver

SPS

SRAM
SV
TDOP

3-D Coverage

3-D Navigation

Acronyms, Abbreviationsand Glossary

Peak to Peak.

Precise Positioning Service. The GPS positioning, velocity, and time service that are available
on a continuous, worldwide basis to users authorized by the DoD.

Pseudorandom Noise Number. The identity of the GPS satellites as determined by a GPS
receiver. Since al GPS satellites must transmit on the same frequency, they are distinguished
by their pseudorandom noise codes.

The calculated range form the GPS receiver to the satellite determined by measuring the phrase
shift of the PRN code received from the satellite with the internally generated PRN code from
the receiver. Because of atmospheric and timing effects, this time is not exact. Therefore, it is
called a pseudorange instead of a true range.

Position, Velocity, and Time.
Random Access Memory.

A GPS receiver specification that indicates the number of independent hardware signal
processing channels included in the receiver design.

Radio Frequency.

Radio Frequency Interference.

Read Only Memory.

Radio Technical Commissionof Aeronautics.

Radio Technical Commission of Maritime Services. Also commonly used as a reference to the
standard format that DGPS corrections data is distributed in RTCM Recommended Sandard for
Differential Navstar GPS Service. SiRFstar receiver supports the latest Version 2.1 of this
standard.

Selective Availability. The method used by the DoD to control access to the full accuracy
achievable with the C/A code.

The angle of the satellite above the horizon.

Spherical Error Probable. The radius of a sphere, centered at the user’s true location, that
contain 50 percent of the individual 3-D position measurements made using a particular
navigation system.

A GPS receiver in which the number of satellite signals to be tracked exceeds the number of
available hardware channels. Sequential receivers periodically reassign hardware channels to
particular satellite signals in a predetermined sequence.

Signal-to-Noise Ratio, often expressed in decibels.

Standard Positioning Service. A position service available to all GPS users on a continuous,
worldwide basis with no direct charge. SPS uses the C/A code to provide a minimum dynamic
and static positioning capability.

Static Random Access Memory. In context of this document, see also NVRAM.
Satellite Vehicle.

Time Dilution of Precision. A measure of how much the geometry of the satellites affects the
time estimate computed from the satellite range measurements.

The number of hours-per-day with four or more satellites visible. Four visible satellites are
required to determine a 3 dimensional position.

Navigation Mode in which altitude and horizontal position are determined from satellite range
measurements.

F-5

1]
-

TTFF

2-D Coverage

2-D Navigation

UART

UDRE

UERE
Update Rate

UTC

VCO
VDOP

VSWR

Warm Start

WGS-84

F-6

Time-To-First-Fix. The actual time required by a GPS receiver to achieve a position solution.
This specification varies with the operating state of the receiver, the length of time since the
last position fix, the location of the last fix, and the specific receiver design. See also Hot Start,
Warm Start, and Cold Start mode descriptions.

The number of hours-per-day with three or more satellites visible. Three visible (hours)
satellites can be used to determine location if the GPS receiver is designed to accept an external
atitude input (Altitude Hold).

Navigation Mode in which a fixed value of altitude is used for one or more position
calculations while horizontal (2-D) position can vary freely based on satellite range
measurements.

Universal Asynchronous Receiver/Transmitter that produces an electrical signal and timing for
transmission of data over a communications path, and circuitry for detection and capture of
such data transmitted from another UART.

User Differential Range Error. A one sigma estimate of the pseudo range measurement error
due to ambient noise and residual multipath.

User Equivalent Range Error.

The GPS receiver specification that indicates the solution rate provided by the receiver when
operating normally. It is typically once per second.

Universal Time Coordinated. This time system uses the second defined true angular rotation of
the Earth measured as if the Earth rotated about its Conventional Terrestrial Pole. However,
UTC is adjusted only in increments of one second. The time zone of UTC is that of Greenwich
Mean Time (GMT).

VoltageControlled Oscillator.

Vertical Dilution of Precision. A measure of how much the geometry of the satellites affects
the position estimate (computed from the satellite range measurements) in the vertical
(perpendicular to the plane of the user) direction.

Voltage Standing Wave Ratio.

Start mode of the GPS receiver when current position, clock offset and approximate GPS time
are input by the user. Almanac is retained, but ephemeris data is cleared.

World Geodetic System (1984). A mathematical ellipsoid designed to fit the shape of the entire
Earth. It is often used as a reference on a worldwide basis, while other ellipsoids are used
locally to provide a better fit to Earth in alocal region. GPS uses the center of the WGS-84
ellipsoid as the center of the GPS ECEF reference frame.

SRFstarlle System Development Kit User’s Guide—Part 1 — Software—May 2002

ADDITIONAL AVAILABLE PRODUCT INFORMATION

Part Number | Description
Product Inserts
SiRFstarlle Evaluation Kit
SiRFstarlle System Development Kit
Product Briefs
1055-1016 GSP2e
1055-1017 GRF2i
Application Notes
APNT0003 Troubleshooting Guide
APNT0004 System RF Front-end Requirements for SiRFstar Architectures
APNT0006 PCB Design Guidelines
APNT0007 Open Short Detector
APNT0010 GRF2i QFN Introduction
APNT0011 S2AB Design Upgrade
APNT0012 GSP2e Hardware Implementation
APNT0013 SiRFstarl LXHS Back-up Power Operation
APNT0014 Connecting to the GSP2e Board Using the ARM Multi-ICE
APNT0015 SiRFstarll S2AR Back-up Power Operation
APNT0016 SiRFstarll Alternate Flash Programming Algorithms
APNT0017 Board Level Design for GSP2e
APNT0018 SiRFstarlle Low Power Operating Modes
APNT0019 SSII CPU Clock and Hardware Detection
APNT0020 Implementing User Tasks on the SiRFstarlle
APNT0021 S2AM Hardware Reference Design Description
APNT0022 Integrating Patch Antenna’s with SiRF GPS Receivers
APNT0023 Effect of Increasing User Task Duty Cycle on Performance
APNT0024 SiRFstarlle GPS Receiver Jamming Immunity
APNT0025 GPS Reset for SiRFstarll
APNT0026 Adding Elements to Battery-Backed SRAM
APNT0028 Battery Backed SRAM Operation at 49MHz with the GSP2e
APNT0029 GSP2e and GSP2e Cache
APNT0030 EHPE and EVPE Calculations
APNT0032 Interfacing a 3-wire Serial EEPROM with the GSP2e
SiRF Technology Inc. SiRF France
148 East Brokaw Tel: +33-3-82860415
San Jose, CA 95112 Fax: +44-1344-668157
Tel: +1-408-467-0410 Email: rocky@sirf.com

Fax: +1-408-467-

0420

Email: gps@sirf.com
Website: http://www.sirf.com

SiRF Texas SiRF Germany

Tel: +1-972-239-6988 Tel: +49-81-529932-90
Fax: +1-972-239-0372 Fax: +49-81-529931-70
Email: jdaniels@sirf.com Email: peterz@sirf.com
SiRF United Kingdom SiRF Taiwan

Tel: +44-1344-668390 Tel: +886-2-2723-7853
Fax: +44-1344-668157 Fax: +886-2-2723-7854
Email: aellis@sirf.com Email: sirf_taiwan@sirf.com

SiRFstarlle System Development Kit User’s Guide, Part 1 - Software

© 2000-2002 SiRF

Technology Inc. All rights reserved.

Protected by U.S. Patents #9740398VV, #5,897,605, #5,901,171, #5,719,383, #6,018,704, #6,037,900, #6,041,280, and #6,047,017 and #6,081,228. Other U.S. and foreign patents are pending. SiRF,
the SiRF logo, and SiRFstar are registered trademarks of SiRF Technology, Inc. SnapLock, Foliage Lock, TricklePower, SingleSat, SiRFLoc, SiRFDRive, and WinSiRF are trademarks of SiRF Technol-
ogy, Inc. Other trademarks are property of respective companies.

This document contains information on SiRF products. SiRF reserves the right to make changes in its products, specifications and other information at any time without notice. SiRF assumes no liability
or responsibility for any claims or damages arising out of the use of this document, or from the use of integrated circuits based on this data sheet, including, but not limited to claims or damages based
on infringement of patents, copyrights or other intellectual property rights. No license, either expressed or implied, is granted to any intellectual property rights of SIRF. SiRF makes no warranties, either
express or implied with respect to the information and specification contained in this document. Performance characteristics listed in this document do not constitute a warranty or guarantee of product
performance. SiRF products are not intended for use in life support systems or for life saving applications. All terms and conditions of sale are governed by the SiRF Terms and Conditions of Sale, a
copy of which may obtain from your authorized SiRF sales representative.

May 2002

	SiRFstarIIe SDK Users Guide, P1 - Software
	Contents
	Preface
	Skills Required to Use the System Development Kit
	How This Guide Is Organized
	Related Manuals
	Troubleshooting/Contacting SiRF Technical Support
	Helpful Information When Contacting SiRF Technical Support

	1. System Development Kit Overview
	The S2SDK Development Board
	The GSW2 Software
	Toolkit Software
	SiRFstarIIe System Development Kit CD

	2. Installation
	Installing the S2SDK
	Installing the Toolkit Software
	Installing ARM Development Tools

	3. Available System Resources
	ROM/RAM Requirements
	Stack Requirements
	Adding Elements to Battery Backed SRAM

	4. Software Build Process
	Software Build Process and Variants
	Basic Compile Switches

	5. Flash Programming
	Downloading Software using SiRFflash
	Reading Flash Memory
	Supporting Different Flash Types

	6. Development and Debugging
	Adding a User Version String
	Multi-ICE Debugging
	PRINTF Debugging
	S2SDK LED Activation
	GPS Performance Testing
	Using PROCOMM to Send NMEA Messages
	NMEA Checksum Utility
	Uploading Code to SiRFstarIIe without SiRFflash

	7. Memory BUS and Components
	Memory
	Memory Map

	8. Input/Output Messages
	Changing Default Message Settings
	Adding New Input/Output Messages

	9. Low Power Operation
	TricklePower
	Push-to-Fix
	Setting Low Power Acquisition Parameters

	10. User Tasks, ASIC Interrupts, and the Scheduler
	ASIC Interrupts
	Adding a User Task
	Start/Stop GPS Functions

	11. DGPS Operation
	Setting Differential Correction Source
	SiRF Binary Messages for Differential
	Module Interface Routines for Differential

	12. Adding a New User Protocol
	Protocol Implementation
	USER1 Protocol
	Single Character Delivery

	13. GPIO Lines, Throughput and Wait States
	GPIO Lines
	Chip Select Wait States

	A. Converting UTC Time to GPS Week Number and TOW
	B. SiRF Binary Messaging Functions
	SiRF Binary Messages

	C. Module Interface Details
	Module Interface Events
	Module Interface Routines

	D. Error Ellipse Functions
	Computation of Navigation Error Ellipse

	E. File Descriptions
	File Organization
	Individual File Descriptions
	Non SDK Source/Build Files

	F. Acronyms, Abbreviations and Glossary
	Additional Available Product Information

